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Abstract

Internally and externally triggered sensory, motor and cognitive events elicit a number of transient changes in the ongoing
electroencephalogram (EEG): event-related brain potentials (ERPs), event-related synchronization and desynchronization (ERS/ERD), and
event-related phase resetting (ERPR). To increase the signal-to-noise ratio of event-related brain responses, most studies rely on across-trial
averaging in the time domain, a procedure that is, however, blind to a significant fraction of the elicited cortical activity. Here, we outline the
key concepts underlying the limitations of time-domain averaging and consider three alternative methodological approaches that have
received increasing interest: time-frequency decomposition of the EEG (using the continuous wavelet transform), blind source separation of
the EEG (using Independent Component Analysis) and the analysis of event-related brain responses at the level of single trials. In addition,
we provide practical guidelines on the implementation of these methods and on the interpretation of the results they produce.
© 2008 Elsevier Inc. All rights reserved.
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1. Electrical brain responses to transient events

The ongoing electrical activity of the human brain can be
directly sampled through the skull, using one or an array of
electrodes placed on the scalp. The recorded electrical acti-
vity (the electroencephalogram, EEG) mainly reflects
summated, slow post-synaptic potentials of cortical neurons
[1]. Sensory, motor or cognitive events (such as a fast-rising
sensory stimulus, a brisk self-paced movement or a stimulus-
triggered cognitive task) can elicit transient changes in
this ongoing electrical activity [2]. However, only a
fraction of these changes actually translates into responses
that are measurable in the scalp EEG, because the elicited
neuronal activity must satisfy a number of conditions to
become detectable:

(1) The elicited neuronal activity must generate a
relatively strong electrical field, and, therefore, it
must involve a large population of neurons.
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(2) The neural activity must be synchronous. Indeed, if
the activity is temporally dispersed, the resulting
electrical field will be diluted over time, and the signal
difficult to measure on the scalp.

(3) The activated neuronal population must constitute an
open field structure. If its geometrical configuration
constitutes a closed field structure (e.g., neurons of a
subcortical nucleus, organized in a radially symmetric
configuration), the net electrical field outside the
active structure will be null, as the electrical fields
produced by the neurons of that structure will cancel
each other.

(4) The time course of the elicited electrical activity
must be relatively slow changing, as the skull and
scalp interface act as a low-pass filter [3]. Therefore,
scalp EEG does not include much of the high-
frequency activity evident, for example, in direct
intracortical recordings.

1.1. Event-related potentials

It is generally accepted that event-related potentials
(ERPs) reflect synchronous changes of slow postsynaptic
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potential occurring within a large number of similarly
oriented cortical pyramidal neurons of a compact area of the
cortex [1].1 ERPs consist in brief monophasic deflections
embedded in the background EEG. These deflections are
characterized by their polarity, peak latency (relative to the
onset of the event), peak amplitude (relative to a baseline)
and scalp distribution.2

1.2. Event-related synchronization
and desynchronization

It is known since the first EEG recordings described by
Hans Berger in 1929 [5] that, in addition to triggering ERPs,
various events may also trigger transient power modulations
of the ongoing EEG oscillatory activity. These modulations
may appear either as a transient increase (event-related
synchronization, ERS) or as a transient decrease (event-
related desynchronization, ERD) of power, usually confined
within a specific frequency band of the EEG. The terms
‘synchronization’ and ‘desynchronization’ reflect the view
that the increase/reduction in EEG oscillation power results
from a synchronization/desynchronization of the activity of
a population of neurons, and not from an overall increase/
decrease of single-neuron activity. It is important to
highlight that the functional significance of ERD and ERS
differs according to the affected frequency band. ERS in the
alpha frequency band (8–12 Hz) is often hypothesized to
reflect cortical deactivation or inhibition, while ERD in the
same frequency band is hypothesized to reflect cortical
activation or disinhibition [6]. These hypotheses rely on
experimental results showing, for example, that the power of
alpha band rhythms is enhanced over the hand area during
visual processing, or during foot movements [7]. In contrast,
ERS in the gamma frequency band (25–100 Hz) is thought
to subtend the formation of transient functional neuronal
assemblies, possibly over large distances [8]. Gamma-band
ERS could therefore play an important role for synchro-
nizing cortical processes occurring within and possibly
between different brain areas, a mechanism to integrate
different features of sensory inputs into a coherent and
meaningful percept [9]. In addition to the frequency (or
range of frequencies) affected, ERS and ERD are character-
ized by their latency relative to event onset, their magnitude
relative to a baseline level, and their scalp distribution.
1 Recent evidence has also suggested that high-frequency components
(600 Hz) of the EEG response elicited by the electrical stimulation of the
median nerve may be a direct correlate of spike discharges in cortical
neurons [4].

2 The scalp distribution of the deflection can also be used to infer the
location of their underlying neural sources, using models of how neural
activity translates into scalp potentials. However, because an infinite
number of source configurations can explain any given distribution of scalp
potentials, additional assumptions (e.g., number of contributing sources,
anatomical constraints on their locations) must be made, therefore limiting
the trustworthiness of these approaches.
1.3. Event-related phase resetting

In addition to ERPs, ERS and ERD, a number of
investigators [10] have suggested that various events may
also trigger a transient reorganization (or ‘resetting’) of the
phase of ongoing EEG oscillations (event-related phase
resetting, ERPR), although the physiological plausibility of
this phenomenon remains to be demonstrated [10]. Phase
resetting is common to nonlinear oscillatory systems in
response to a perturbation and has been observed in a
number of biological systems such as circadian rhythms and
the electrocardiogram [11].

2. Detecting electrical EEG brain responses to transient
events: time-domain averaging

The magnitude of event-related EEG responses is often
several factors smaller than the magnitude of the background
ongoing EEG. Therefore, the identification and characteriza-
tion of these event-related brain responses rely on signal-
processing methods of enhancing their signal-to-noise ratio.
All these methods require repeating the event of interest a
given number of times. The scalp EEG recording is then
segmented into epochs, centred around each single event,
and all epochs are averaged into a single waveform (time-
domain averaging) [12,13]. The obtained waveform expres-
ses the average scalp potential as a function of time relative
to the onset of the event. The basic assumption underlying
this procedure is that ERPs are stationary (i.e., their latency
and morphology are invariant) and will therefore be
unaffected by the averaging procedure. On the contrary,
ongoing electrical brain activity behaves as noise unrelated
to the event, and will therefore be largely cancelled out.
Consequently, time-domain averaging will enhance the
signal-to-noise ratio of stationary ERPs (Figs. 1 and 2).

Although useful in many instances, there are several
issues related to time-domain averaging. In the following
section, we will show (i) how time-domain averaging may
distort or even miss ERPs that are not perfectly time-locked
to the onset of the stimulus, (ii) how it is completely blind to
ERS and ERD, and (iii) how it may mistakenly identify
ERPRs as ERPs. Finally, we will show that it is often
difficult to disentangle the different brain processes that may
contribute to the signal recorded on the scalp.

2.1. ERPs affected by latency jitter

A critical assumption underlying time-domain averaging
is that ERPs are stationary across trials. In some circum-
stances, this assumption is reasonable, for example when
considering the early brain responses elicited by the direct
electrical activation of a peripheral nerve (a stimulation
producing a highly reproducible and synchronous afferent
volley). However, there are many instances in which the
different processes that separate the occurrence of the event
from the generation of the cortical response result in a
significant increase of the across-trial variability of response



Fig. 1. Increase of signal-to-noise ratio by across-trial averaging of EEG
epochs in the time domain. Event-related brain responses were elicited by
brief infrared laser pulses (activating Aδ-fibre skin nociceptors) applied to
the dorsum of the right hand and recorded from the vertex (Cz-nose
reference). The black waveform on the top row represents the EEG response
to the first stimulus. The black waveforms in the following rows represen
the average of an increasing number of trials (defined by n). For comparison
the average of 40 trials is superimposed as a dotted waveform. Note how the
signal-to-noise ratio improves by averaging a progressively greater number
of trials.
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latency: brain responses reflecting high-level cognitive
processes, brain responses elicited by the stimulation of
afferent nerve fibres having slow and variable conduction
velocities (such as small-myelinated Aδ and unmyelinated C
fibres), brain responses elicited by the natural stimulation of
skin receptors (because of the additional transduction
processes required to convert the energy of the stimulus
into electrical impulses).

In these instances, the significant latency jitter may lead
to an important distortion of the averaged ERP. At best, this
distortion will result in an underestimation of the ERP peak
amplitude, whose average will be spread over time (Figs. 2
and 3). At worst, it will render the ERP undetectable. An
important implication of this is that a difference in
amplitude of an average ERP recorded in two experimental
conditions can result from a difference in latency jitter
between conditions [14]. In addition, if the distribution of
latency jitter is skewed (e.g., a Poisson distribution), the
difference in latency jitter between conditions will also be
reflected by a difference in the peak latency of the average
ERP (Fig. 3).

The extent to which latency jitter affects ERPs averaged
in the time domain varies as a function of the duration of the
scalp deflection. Indeed, in the presence of the same latency
jitter, a long-lasting deflection will be more stationary than a
short-lasting deflection and, consequently, less distorted by
time-domain averaging. Because it is reasonable to assume
that the longer the latency of a given brain response, the
greater its latency jitter, this could explain why short-lasting
ERPs are only found at early latencies, and why late-latency
ERPs are always long-lasting responses. Therefore, it could
well be that transient events elicit a large number of late-
latency, short-lasting ERPs, but that these remain undetected
because a significant latency jitter distorts them beyond
recognition.

2.1.1. ERD and ERS
Because ongoing EEG oscillations are unrelated to the

stimulus, their phase is not stationary across trials (i.e.,
relative to the onset of the stimulus, their phases are
homogeneously distributed across trials). Therefore, as the
signal changes related to these ‘non-phase-locked’ oscilla-
tions behave like uncorrelated noise, they are largely
cancelled out by time-domain averaging (Fig. 2). For this
reason, time-domain averaging is unable to reveal any event-
related transient modulation of power, despite being time
locked to the stimulus onset.

2.1.2. ERPs and ERPRs
In recent years, attention has been drawn to the fact that

electrical brain responses appearing as ERPs in the time-
domain average waveform could, at least in some cases, be
explained by an event-related resetting of the phase of the
ongoing EEG (event-related phase resetting, ERPR). If, at a
given latency, an event resets the phase of ongoing EEG
oscillations, they will become transiently phase-locked to the
onset of the event and, therefore, become transiently visible
after time-domain averaging. As ERPR may produce a de-
flection entirely similar to that produced by an ERP (Fig. 2),
time- domain averaging is unable to distinguish between the
two types of electrical brain responses.



Fig. 2. Effect of across-trial averaging in the time domain on different models of event-related EEG brain responses. Event-related potentials (ERPs) were
modelled as a time-locked deflection embedded in background oscillatory activity. In the left panel (ERP), the latency of the response was either varied from trial
to trial using a significant jitter (left waveforms) or a moderate jitter (middle waveforms), or constant across trials (right waveforms). In the middle panel (ERD
and ERS), ERD and ERS were modelled as time-locked decreases or increases of the amplitude of ongoing, non-phase-locked oscillations. In the right panel
(ERPR), event-related phase resetting (ERPR) was modelled as a time-locked resetting of the phase of ongoing, initially non-phase-locked oscillations. A sample
of non-averaged, single-trial waveforms is shown in the upper part of the figure, with the latency of the event-related activity represented as a dashed vertical line.
The result of across-trial time-domain averaging is shown in the middle part of the figure, superimposed to the single-trial waveforms (represented in color). Note
how the procedure (1) enhances the signal-to-noise ratio of ERPs when no jitter is present, but (2) produces a distorted average ERP when latency jitter is present,
(3) completely cancels out the non-phase-locked oscillations underlying ERD and ERS, and (4) represents ERPR as a transient deflection that could be mistaken
for an ERP. The histograms in the bottom part of the figure represent the frequency distributions of response latency and response phase across trials. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Effect of latency jitter on the shape, latency and amplitude of the ERP
obtained by across-trial averaging in the time domain of simulated ERP data
The frequency distributions of single-trial latencies in the presence of dif-
ferent levels of jitter (positively skewed distribution with increasing variance
from black to red) are shown in the insert. Note that, although the amplitude
of single trial ERPs is the same in all three conditions, the asymmetrically
distributed increase in latency jitter progressively distorts the original signal
leading to a reduction in peak amplitude, but also to an increase in peak
latency of the waveform obtained by time-domain averaging. (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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3 Most of thesemethods are implemented in two freely distributed software
for the analysis of event-related EEG responses: LetsWave (http://amouraux.
webnode.com/letswave) and EEGLAB (http://sccn.ucsd.edu/eeglab).
2.1.3. Spatial and temporal overlapping of multiple
cortical generators

Although it is tempting to think that, given its high
temporal resolution, EEG allows unravelling the time
course of the different brain processes related to a particular
event, the accurate interpretation of scalp responses is
difficult because each scalp electrode records a spatially
blurred mixture of neural activities. This spatial filtering is a
consequence of volume conduction (i.e., the conduction of
the signals through the anatomical structures interposed
between the origin of the neural activity and the recording
electrode). It is generally accepted that all but the earliest
ERPs reflect activity arising from multiple, spatially
distributed sources. Therefore, it is often difficult to
disentangle (either in space or time) the different brain
processes that may contribute to the signal recorded on
the scalp.

3. Detecting electrical event-related brain responses:
alternative methods

Because averaging in the time domain clearly makes a
considerable part of the information present in single EEG
epochs undetectable, a number of alternative signal-
processing approaches have been suggested. Here, we will
outline the principles underlying three different methods
and focus on how the results obtained using these methods
may be interpreted.

First, we will discuss methods relying on the joint
decomposition of the EEG in both the time domain and the
frequency domain. We will examine how these methods
allow revealing ERPs affected by latency jitter, ERS and
ERD. We will also show how these methods may allow
distinguishing between ERPs and ERPRs.

Second, we will discuss methods that rely on independent
component analysis (ICA) to perform a blind separation of
EEG sources and examine how this may allow disentangling
event-related brain responses that are temporally and
spatially overlapped.

Third, we will discuss methods that have been
proposed to analyse event-related brain responses at
single-trial level (i.e., without resorting to across-trial
averaging) and examine how this may disclose relevant
physiological information.3
4. Detecting event-related EEG brain responses:
time-frequency domain averaging

Several methods have been proposed to identify,
characterize and quantify ERS and ERD [6]. All these
different methods are based on techniques to estimate, within
each single EEG epoch, the amplitude of oscillatory activity
as a function of time and frequency. Because the estimate is a
time- varying expression of oscillation amplitude regardless
of its phase, averaging these estimates across trials discloses
both phase-locked and non-phase-locked modulations of
signal amplitude, provided that these modulations are both
time locked to the onset of the event and consistent in
frequency (i.e., the latency and frequency at which they
occur are reproducible across trials).

In addition, some of these methods allow estimating the
phase of the signal and therefore assess phase coherence
across trials and channels (a parameter also known as ‘phase-
locking value’ (PLV) or ‘phase coherence’).

4.1. Time-frequency decomposition of EEG epochs

A commonly used method consists in filtering EEG
epochs within a given frequency band, squaring the filtered
epochs and smoothing the resulting waveforms using a
moving average of a predefined duration [15]. This method,
although easy to implement, has one important drawback:
the range of explored frequencies must be arbitrarily
defined. Therefore, it is not well suited to exploring signals
containing a wide range of frequencies (e.g., the EEG),
especially because meaningful differences can be found in
neighbouring EEG frequency bands [16]. Furthermore, the
smoothing required to cancel out phase and thereby
estimate the envelope of the signal results in a reduced
temporal resolution.

http://www.amouraux.webnode.com/letswave
http://www.amouraux.webnode.com/letswave
http://sccn.ucsd.edu/eeglab


Fig. 4. Time-frequency decomposition of EEG data using the CWT (Morlet
function). The Morlet function has a Gaussian distribution centred around
time t0 and frequency ω0 Time and frequency variance of the function (σt,0

2

and σω,0
2 ) define the resolution of the decomposition. By translating the

mother wavelet, parameter d defines the location in time of the daughter
wavelet. By dilating and contracting the wavelet, parameter s not only
defines the location in frequency of the daughter wavelet, but also the time/
frequency resolution ratio. Note that the area represented by the product of
both variances (σt,0

2 , and σω,0
2 ) is constant. Adapted from Ref. [17].
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4.1.1. The windowed Fourier transform
The Fourier transform can be used to measure oscillation

amplitude across the whole frequency spectrum. However,
the Fourier transform contains no temporal information. To
retain some temporal information, the Fourier transform can
be performed on successive EEG segments defined by a
windowing function (‘short-term Fourier transform’ or
‘windowed Fourier transform’). This procedure expresses
the amplitude and phase of the signal in both time and
frequency. In analogy to Heisenberg's uncertainty principle,
the width of the windowing function defines both the
temporal and the frequency resolution of this method. The
windowed Fourier transform uses a fixed and arbitrarily
defined window width, thus resulting in a fixed time-
frequency resolution. When defining a narrow window,
temporal resolution will be high (i.e., it will be possible to
resolve two events happening closely in time), but frequency
resolution will be low (i.e., it will not be possible to resolve
two events happening closely in frequency). On the
opposite, when defining a wide window, the frequency
resolution of the transform will be high, but at the cost of a
low temporal resolution.

4.1.2. The continuous wavelet transform
By adapting the window width as a function of the

estimated frequency, the continuous wavelet transform
(CWT) offers an optimal compromise for time-frequency
resolution and is therefore well suited to explore event-
related modulations of the EEG spectrum in a wide range of
frequencies. When estimating low frequencies, the CWT
uses a wide window, resulting in low temporal resolution but
high-frequency resolution. At these low frequencies, the loss
of temporal resolution is irrelevant because the latencies of
low frequency changes are uncertain by definition.4 In
contrast, when estimating high frequencies, the CWT uses a
narrow window, resulting in high temporal resolution but
low frequency resolution. At these high frequencies, the loss
of frequency resolution is irrelevant because the frequencies
composing short-lasting changes (e.g., a brief discontinuity
in the signal) are uncertain by definition.

The Morlet function is the most often used family of
wavelets, when applied to EEG data. It is a function of time t
composed of a complex exponential modulated by a
Gaussian envelope:

w tð Þ ¼ exp � t2

2r2

� �
exp jx0tð Þ

The Morlet has a Gaussian distribution in both the time
and the frequency domain, centred around time t0=0 and
frequency ω0. The spread of the Morlet function in time and
frequency is defined by σ.
4 A typical example of this is the low-frequency drifts of the
EEG signal.
This ‘mother’ function is then used to build a set of
‘daughter’ functions ψd,s (t):

wd;s tð Þ ¼
1
s
w

t � d
s

� �

By translating ψ(t), the parameter d (or ‘time-shift’)
defines the location in time of the daughter wavelet. By
dilating or contracting ψ(t), the parameter s (or ‘scaling
factor’) adjusts not only the mean frequency of the wavelet,
but also its spread. The variance of ψd,s(t) in the time domain
and in the frequency domain is thus not only a function of the
variance of the mother wavelet, but also of s, the scaling
factor. If the wavelet is dilated, the spread of the function is
increased in the time domain while its spread in the
frequency domain is proportionally reduced. On the contrary,
if the wavelet is contracted, the spread of the function is
decreased in the time domain while its spread in the
frequency domain is proportionally increased. As time and
frequency resolution of the wavelet transform are defined by
the relative variance of the wavelet in time and frequency,5

by adapting the window width as a function of the estimated
frequency, CWT offers an optimal compromise for time-
frequency resolution (Fig. 4).

The wavelet transform Tf (d,s) of f(t) is the inner
product of the wavelet function ψd,s(t) with f(t). The norm
5 At one extreme of this relationship lies the Fourier transform applied
to the whole signal. In that case, the frequency resolution of the transform is
maximal, but contains no temporal information. At the other extreme of this
relationship lies the untransformed signal. In that case, the temporal
resolution is maximal, but contains no frequency information.



Fig. 5. Across-trial averaging of event-related electrical brain responses in the time-frequency domain. ERPs (left panel) were modelled as a time-locked
deflection embedded in a background of non-phase-locked oscillations. ERD and ERS (middle panel) were modelled as a time-locked decrease/increase of
background non-phase-locked oscillations. ERPR (right panel) was modelled as a time-locked resetting of the phase of ongoing, initially non-phase-locked
oscillations (see also Fig. 1). CWT-SINGLE. A time-frequency representation of oscillation amplitude is obtained from each single epoch, and the obtained
time-frequency matrices are subsequently averaged across trials. This procedure enhances the signal-to-noise ratio of both phase-locked and non-phase-
locked electrical brain responses. Note the presence of a continuous activity centred around 10 Hz in all plots, corresponding to the modelled background
oscillations. Note how CWT-SINGLE enhances ERPs (even when their latency is subject to a significant across-trial jitter), preserves the non-phase-locked
oscillations (allowing revealing time-locked ERD and ERS), and how the discontinuity in the signal introduced by ERPR results in a transient redistribution
of the signal amplitudes. CWT-AVERAGE. A time-frequency representation obtained from the waveform resulting from across-trials averaging in the time
domain. Note how only ERPs devoid of latency jitter and ERPR are revealed by time-domain averaging. In the third row of the figure, amplitude values of
10-Hz oscillations obtained from CWT- SINGLE (red waveform) and CWT-AVERAGE (green waveform), and their PLV (a measure of phase locking
across trials, blue waveform) are plotted against time. Note how PLV and CWT-AVERAGE follow the same trend, indicating that averaging in the time
domain is able to preserve only phase-locked activities. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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of this complex value is an estimate of the oscillation
amplitude of f(t) around time and frequency defined by d
and s. The argument is an estimate of its instantaneous
phase. Time-frequency maps of oscillation amplitude or
phase can thus be constructed using a set of daughter
wavelets whose average frequency will range from the
lowest to the highest frequency to be explored, and whose
Fig. 6. Event-related brain responses revealed by decomposing signals in the time
PLV). Both CWT-AVERAGE and PLV reveal time-locked signal changes only w
(i.e., ERPs and/or ERPR). In contrast, the CWT-SINGLE reveals time-locked sig
ERPs with and without latency jitter, ERD and ERS). CWT-AVERAGE and CWT
to a pre-stimulus reference interval (−0.4 to −0.1 s). The eliciting stimulus was
elicited not only a series of event-related potentials (ERPs), but also at least two n
the response labelled as ‘ERS’ could also be interpreted as an ERP rendered non
[17]. (This image may be viewed in color in the web version of this article.)
average latency will range from the lowest to the highest
latency to be explored.

4.1.3. CWT of single EEG epochs (CWT-SINGLE)
To enhance the three possible event-related changes in

the EEG signal that are time-locked, but not necessarily
phase-locked to the eliciting event (i.e., non-phase-locked
-frequency domain using the CWT (CWT-AVERAGE, CWT-SINGLE and
hen these signal changes are also phase-locked to the onset of the stimulus
nal changes whether or not phase-locked to the onset of the stimulus (i.e.
-SINGLE estimates of signal amplitude are expressed as Z scores, relative
a brief pulse of radiant heat (applied to the dorsum of the left hand) tha
on-phase-locked responses of higher frequency (ERS and ERD). Note tha
-phase locked by a significant amount of latency jitter. Adapted from Ref
,

t
t
.
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ERS and ERD, non-phase-locked ERPs subject to a
significant latency jitter, and phase-locked ERPs), the
CWT is applied to each single EEG epoch [17,18], prior to
averaging across trials (CWT-SINGLE). Resulting time-
frequency estimates are then used to compute a matrix
expressing oscillation amplitude as a function of time and
frequency. The average across trials of these matrices
expresses the average EEG oscillation amplitude as a
function of time (relative to stimulus onset) and frequency
(Figs. 5 and 6). For each estimated frequency (i.e., each
row of the matrix), the averaging procedure will preserve
fluctuations in signal amplitude that occur at a fixed
latency across trials, but smooth out fluctuations that are
temporally unrelated to the stimulus onset. Thus, CWT-
SINGLE enhances the signal-to-noise ratio of both phase-
locked and non-phase-locked event-related EEG responses
(Figs. 5 and 6).

4.1.4. CWT of EEG epochs averaged in the time domain
(CWT-AVERAGE)

As outlined in Section 2, the standard average across
trials of single EEG epochs enhances the signal-to-noise
ratio of stimulus-related EEG changes that are phase-
locked to the event onset (i.e., ERPs, phase resetting), but
cancels out event-related EEG changes that are not phase
locked (i.e., ERS and ERD). The CWT of EEG epochs
averaged in the time domain (CWT-AVERAGE) can be
computed to obtain a time-frequency representation of
phase-locked EEG responses and thereby assess whether
amplitude enhancements identified in the CWT-SINGLE
transform correspond to phase-locked (ERPs) or non-
phase-locked (ERS/ERD) activities (Figs. 5 and 6).
Consequently, activities present in both the CWT-AVER-
AGE and the CWT-SINGLE should be considered as
phase-locked (ERPs), while activities present only in the
CWT-SINGLE should be considered as non phase-locked
(ERD and ERS). Furthermore, activities present only in the
CWT-AVERAGE may be hypothesized to reflect phase
resetting (appearing as an increase of signal amplitude in
the CWT-AVERAGE related to the fact that during the
transient interval where these oscillations become phase-
locked to the onset of the stimulus, they are not cancelled
out by the averaging procedure).6

4.1.5. Phase-locking value
The PLV is a measure of how much phase locked (i.e.,

how stationary) the EEG signal is across trials. ϕ(d,s,n) is
the estimated instantaneous phase of the nth EEG epoch at
time and frequency locations defined by d and s [9,19].
6 However, it is necessary to mention that the situation is usually more
complex than in this ideal example, for a number of reasons: (1) any change
of phase entails a transient redistribution of its frequency; hence, even if
pure phase resetting occurs, the CWT-SINGLE will always show a
variation in amplitude; (2) phase resetting and actual increase of signal
amplitude can occur concomitantly, thus making it difficult to disentangle
the two possible contributions.
PLV(d,s) is obtained by taking the norm of the average
of ϕ(d,s,n) across N trials:

PLV d; sð Þ ¼ jPN
n¼1 / d; s; nð Þj

N

Consequently, PLV is a real value ranging between 0
(random phase across trials) and 1 (constant phase across
trials). Therefore, if at a particular latency and frequency,
the signal is mainly constituted by a response phase locked
to the onset of the stimulus (i.e., an ERP) PLV will tend
towards 1. On the contrary, if at that latency and frequency
the signal amplitude is mainly constituted of EEG
oscillations whose phase is unrelated to the stimulus,
PLV will tend towards 0 (Figs. 5 and 6). It is important to
note that, even though the PLV is obtained solely from an
estimation of signal phase (and not signal amplitude), it
may still be strongly influenced by the ratio between the
amplitude of the explored EEG response and the amplitude
of the background EEG activity. Indeed, if the signal-to-
noise ratio of a perfectly phase-locked ERP is low, the
PLV will be small (because the estimated instantaneous
phase will mostly reflect that of the background, non-
phase-locked activity). On the contrary, if the signal-to-
noise ratio of that ERP is high, the PLV will be large
(because the estimated instantaneous phase will mostly
reflect that of the ERP). Therefore, when interpreting the
difference between the PLV obtained in two experimental
conditions, it is imperative to ascertain that the observed
difference is not simply the result of a difference in the
relative signal-to-noise ratio between phase-locked and
non-phase-locked activities.
4.1.6. Phase-locking value between two scalp electrodes
In recent years, a lot of effort has been devoted to the

investigation of how activities from cortical areas distributed
over the brain may integrate and interact [9,20]. The
possibility that such large-scale interactions could be
mediated by neuronal assemblies oscillating in the gamma
range has been proposed [8]. The formation of these transient
assemblies would be achieved by neuronal activity oscillat-
ing in a phase-locked manner. For all these reasons, it is
relevant to quantify the degree of phase locking of EEG
oscillations recorded at different scalp locations. To measure
how strongly the EEG signal recorded at a given scalp
electrode is phase locked to the EEG signal recorded at
another scalp electrode, the PLV across trials can be
computed using the estimated phase difference between
both signals. The obtained value ranges from 0 (random
phase difference across trials) to 1 (constant phase difference
across trials). However, the interpretation of PLV across
channels is often problematic. Indeed, scalp electrodes
integrate neural activities over large volumes. When the
volumes recorded by two electrodes overlap, the shared
neuronal population will create spurious synchrony between
the signals. In other words, it is often impossible to



Fig. 7. Different methods for obtaining a summary value of the activity within a region of interest (ROI). Mean of all ROI pixels. This method simply
consists in calculating the mean of all pixels enclosed within the ROI. Note how this method may miss a fraction of the response lying outside the
ROI, but also how unrelated noise may contribute to the mean value. Mean of top×% ROI pixels. This method consists in calculating the mean of a
predefined percentage of pixels having either the highest or the lowest values. By reducing the contribution of unrelated noise to the mean, this method
allows defining a large ROI and thereby takes into account variability between subjects and between conditions while avoiding the problem of selecting
just outlier values. Weighted functional ROI. A template of the time-frequency distribution of the response of interest is acquired in a separate recording
session, specifically designed for that purpose. The response template is then used to build a weighted time-frequency mask (weights displayed as a
grayscale) which will be used as ROI. (This image may be viewed in color in the web version of this article.)

7 Because of the important between-subject variability, this is especially
true when comparing results across subjects.
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distinguish clearly between an across-channel increase in
PLV related to a true synchronization of two distinct sources
and an across-channel increase in PLV simply resulting from
volume conduction.

4.1.7. Looking for differences between
experimental conditions

4.1.7.1. Expressing changes relative to baseline. ERS and
ERD are usually expressed as a percentage of change relative
to the average amplitude of a reference interval (ERS%, ERD
%) [15], or, to take into account the variance of amplitude
within that reference interval, they can be also expressed as
deviations from the mean (Z-score) [17]. Whatever the
criterion to express differences, the procedure is performed
separately for each estimated frequency (i.e., each row in the
time-frequency matrix). When defining the interval to be
used as reference, it is important to take into account the fact
that at lower frequencies the wavelet function is very spread
in the time domain. For this reason, to reduce the influence of
oscillations occurring after the onset of the event on the
reference interval, the time points closely preceding the onset
of the event should not be included in the reference interval.

4.1.7.2. Region of interests. When comparing the time-
frequency matrices across different experimental conditions,
regions of interest (ROIs) in the time-frequency matrix are
often employed to reduce the number of comparisons. The
boundaries of the ROI can be either (1) arbitrarily defined or
(2) functionally defined using a method similar to the
functional localizer used in functional magnetic resonance
imaging (fMRI) [21]. In the latter case, a template of the
electrophysiological pattern of interest is defined using the
results obtained in a separate recording session, specifically
designed for that purpose. This response template is then
used to build a weighted time-frequency filter or mask which
will be used as ROI (Fig. 7, right panel).

Whatever the procedure of defining the ROI, two methods
of summarizing its activity can be used.

A simple method is to average all the time-frequency
pixels the ROI contains (Fig. 7, left panel) [17]. This method
has one main disadvantage: if the ROI is too strictly defined,
the obtained summary value will miss the fraction of the
response lying outside the ROI.7 On the contrary, if the ROI
is too loosely defined, unrelated noise included in the ROI
will make it less effective at detecting significant differences
across conditions.

An alternative method (‘top x% approach’ [22,23])
consists in selecting a predefined percentage of pixels
having either the highest amplitude values (defining an ERS
or an ERP) or the lowest amplitude values (defining an ERD)
(Fig. 7, right panel). This approach, because it allows
defining a large ROI, presents several advantages: (1) it takes
into account the functional variability between subjects, (2) it
avoids the problem of selecting just outlier values, (3) it
allows comparing the same number of pixels for each ROI
across experimental conditions, and (4) it reduces the



Fig. 8. Blind source separation of simulated data using an Independent Component Analysis (ICA). Four sources (left panel) having independent time courses
(shown in the insets) were projected onto a two-dimensional plane using strongly overlapping yet distinct Gaussian spatial distributions. The colored maps
represent the strength of the projection onto the plane. The linear mixture of these temporally-independent spatially-overlapping sources are shown in the middle
panel (waveforms represent the mixed signals at two distinct points of the plane). A sample of this mixture of signals (four locations shown as small white disks)
was then separated using an ICA (runica [24,25]). The time course and spatial distribution of the obtained independent components are shown in the right panel.
Note how the blind source separation algorithm was able to resolve accurately the time course and spatial distribution of the original sources contributing to the
mixed signals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

9 Multi-channel scalp potentials recorded at n different time points and
at p different scalp sensors may be written as X, a matrix having p rows and
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‘regression to the mean’ problem, which can significantly
bias the experimental results [23].

5. Spatio-temporal decomposition of event-related
brain responses

Due to volume conduction (i.e., the conduction of the
electric current source through the anatomical structures
interposed between the neural sources and the recording
electrodes), scalp potentials are spatially blurred. Given the
physical properties of the volume conductor [1], it is
reasonable to model the EEG recorded by each scalp
electrode as a linear mixture of all the contributing underlying
sources of electrical activity, some of which may be of
cortical origin and some of which may not (e.g., eye
movement, muscle, or cardiac-related artefacts). For this
reason, it is generally accepted that most event-related EEG
responses recorded on the scalp reflect the activity of several,
spatially smeared, temporally overlapping, yet functionally
and spatially distinct sources of brain activity.8 Although
8 One exception to this case is the early ERPs elicited by sensory
stimuli (e.g., the N20 deflection in response to electrical stimulation of the
median nerve), which are thought to reflect the activity of a single source,
corresponding to the initial response occurring in primary sensory cortices.
often difficult, disentangling these mixed sources of activity
is important to achieve a correct functional interpretation of
the recorded brain responses.

Blind source separation algorithms (Fig. 8) are used in
signal processing to recover independent sources (e.g., the
voices of different people talking simultaneously in a room)
from signals obtained from sensors that record a linear
mixture of these sources (e.g., microphones positioned at
different locations in that room). Therefore, these algorithms
are very well suited for the analysis of scalp EEG.
Independent component analysis has been used successfully
by a growing number of investigators to perform blind
source separation of scalp EEG [24,26]. When applied to
multi-channel recordings, the goal of ICA is to unmix signals
recorded on the scalp into a single linear combination of
independent components (ICs), each having a maximally
independent time course and a fixed scalp distribution.9
n columns. ICA optimizes an unmixing matrix W which linearly unmixes X
into U=WX, a matrix containing p maximally independent time courses.
Each of these time courses has a fixed scalp distribution, characterized by
the corresponding column of the inverse matrix W−1, containing the relative
projection of the component onto the different scalp sensors.
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Applied to non-averaged multi-channel EEG recordings,
the method has proven very efficient at isolating and
removing non-neural artifacts that affect the recorded EEG
[27,28]. Applied to EEG epochs averaged in the time domain
(Fig. 9) and, more recently, applied to non-averaged conca-
tenated EEG epochs, ICA has allowed separating late cogni-
tive ERPs into distinct, independent constituents [24,26].

An IC does not necessarily represent an anatomically
discrete source of activity. Indeed, an IC is defined by its
temporal independence relative to the other sources of
activity. If the activities within two distinct regions of the
brain strongly covary, they will be represented within a
single component.
Fig. 9. Blind source separation of ERPs using probabilistic ICA [24,29]
Late somatosensory ERPs were elicited by the electrical stimulation of the
right nervus radialis superficialis and recorded using 124 scalp electrodes
The top waveform shows the average across trials in the time domain (Cz-
nose reference). The bulk of the signal consisted in a negative deflection
peaking at 137 ms, followed by a positive deflection peaking at 267 ms. The
scalp distribution of both peaks is shown in the upper scalp maps. To
constrain ICA, an objective estimate of dimensionality was obtained using a
method based on maximum likelihoods and operating on the eigenvalues of
principal component analysis [29,30]. The estimated number of dimensions
was 16. The time course of two independent components contributing
respectively to the negative deflection (IC4: green waveform) and the
positive deflection (IC1: purple waveform) is shown in the lower graphs
along with their corresponding scalp distributions. Note how the blind
source separation algorithm was able to effectively separate both peaks into
distinct components. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

10 An additional problem is that, when the study involves the recording
of electrical brain responses in multiple subjects or in multiple sessions, a
method to determine which ICs are common across subjects or sessions is
needed. To achieve this, methods for clustering ICs have been developed,
based, for example, on the components scalp projections, or their spectrum
of activity [27].
.

.

,

When ICA is unconstrained, the total number of
estimated ICs equals the total number of recording
electrodes. If that number is considerably greater than
the true number of independent sources contributing to the
recorded signals, ICs containing spurious activity will
appear because of overfitting. On the opposite, if the total
number of ICs is considerably smaller than the true
number of underlying sources, valuable information will
be lost because of underfitting. This important limitation
(that the number of independent components is arbitrarily
defined) could explain why, until now, ICA has not been
able to clearly and unequivocally disentangle event-related
electrical brain responses into physiologically meaningful
independent constituents.10

Constraining ICA to a number of dimensions that is based
on an effective estimate of the intrinsic dimensionality of
the original data may provide a solution to this critical
problem [29]. This approach, called probabilistic ICA, has
been successfully applied to the analysis of fMRI data.
Because the risk of overfitting or underfitting the data is
reduced, each obtained IC is much more likely to reflect a
single physical or physiological source of activity.
6. Measuring electrical brain responses to transient
events without averaging

As detailed in Section 2, across-trial averaging of EEG
epochs is often a necessary step to obtain a reliable estimate
of event-related brain responses. However, the cost of this
procedure is that all the information concerning the across-
trial variability of these responses is lost. Several methods
have been proposed to denoise and estimate certain
characteristics of event-related electrical brain responses at
the level of single trial. By allowing a direct exploration of
the dynamics between different features of electrical brain
responses (e.g., the peak latency and amplitude of a given
ERP), behavioural variables (e.g., the intensity of perception,
the reaction-time latency) [31] and also features of brain
responses sampled using different neuroimaging modalities
(e.g., fMRI) [32,33], these methods may provide new
insights into the functional significance of the different
brain processes that underlie these brain responses. Indeed,
across-trial variability may reflect important experimental
factors such as modulations of peripheral sensory input
[31,34], or changes in subject performance related to
fluctuations in vigilance, expectation, attentional focus or
task strategy [35]. Furthermore, as shown in Section 2.1,
across-trial variability of electrical brain responses, and
latency jitter in particular, can significantly distort the



Fig. 10. Automatic single-trial measurement of ERPs using multiple linear
regression. Upper panel: Four regressors were obtained from the average in
the time domain of the event-related brain potentials elicited by brief infrared
laser pulses (activating Aδ-fibre skin nociceptors) applied to the dorsum of
the right hand and recorded from the vertex (Cz-nose reference). The solid
waveforms represent the negative (N2, in red) and positive (P2, in green)
deflections of the average in the time domain, and the dashed waveforms
represent their corresponding temporal derivatives. Lower panel: The
multiple linear regression of these four basis vectors against each single EEG
epoch was used to model each single-trial ERP. The black waveform
corresponds to a single representative trial. The red and green waveforms
correspond to the automated fittings of the N2 and P2 deflections,
respectively. The vertical lines correspond to the latency of the N2 and P2
peaks detected by an independent observer. Modified from Ref. [37]. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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average ERP and thereby lead to misestimating its amplitude
and latency.

6.1. Manual measurement of single-trial ERPs

A simple way to obtain single-trial ERP information
consists in attempting to visually identify and measure,
within each single EEG epoch, a given event-related peak
of activity. This approach has been shown to be reason-
ably effective for ERPs that have particularly large
amplitudes [31,36].

However, because the signal-to-noise ratio is generally
low, this approach is often impracticable. If it is nevertheless
attempted, the estimate is likely to reflect the spurious
detection of uncorrelated noise resembling the searched-for
visual template. Although the task can be assigned to an
independent observer, the method remains prone to the
introduction of biases, and the obtained results are difficult to
replicate. Furthermore, because the observer attempts to best
fit the projected response within a noise-embedded signal, the
method almost inevitably leads to an overestimation of
response amplitude.

6.2. Automatic single-trial measurement of ERPs using a
multiple linear regression

Recently, we showed that a multiple linear regression
approach can be used to obtain an unbiased and accurate
estimate of latency and amplitude of single-trial ERPs
(Fig. 10) [37]. This method has been successfully applied
to late somatosensory and auditory ERPs [33,34,38]. In
principle, it could also be applied to the time-frequency
decompositions of single EEG epochs and thereby be used to
estimate non-phase-locked brain responses (ERS and ERD).
In this method, a basis set of regressors and their temporal
derivatives are obtained from the across-trial average wave-
form. This basis set is then regressed against each single EEG
epoch, thus providing a quantitative measure of peak latency
and amplitude of the different ERP waves present in each
single epoch. The inclusion of temporal derivatives allows
modelling the temporal variability of the responses and
provides an estimate of single-trial wave latencies. Further-
more, as the method allows the amplitude of each single-trial
response to be positive or negative, the effect of uncorrelated
peaks in the signal, due to background activity, is treated
without bias. Therefore, if a sufficient number of trials are
considered, the contribution of non-event-related peaks will
tend towards zero.

6.3. Denoising single-trial EEG epochs using spatial filters

In Section 5 we showed that blind source separation
algorithms, and in particular ICA, could be used to
separate linear mixtures of signals into their independent
constituents. Jung et al. [27] showed that the obtained
spatial filters may be used to separate efficiently ERPs
from artifacts related to eye movements, eye blinks and
muscle activity, but also from the background EEG
activity. The result is a marked increase in signal-to-
noise ratio allowing a more robust single-trial estimate of
ERPs [39,40].

6.4. Denoising single-trial EEG epochs with
time-frequency filters

In Section 4 we showed that time-frequency decomposi-
tion methods, such as the wavelet transform, can separate
signals in the frequency domain, while preserving a
significant amount of temporal information. The frequency
distribution of at least a fraction of uncorrelated background
EEG activity and non-brain artefacts differs from that of
event-related electrical brain responses. Therefore, to atte-
nuate the contribution of activities unrelated to the event,
the joint time-frequency decomposition of EEG epochs can
be used to apply a time-varying frequency filter, optimally
adjusted to the time-varying frequency distribution of event-
related brain responses. This procedure efficiently enhances
the signal-to-noise ratio of single EEG epochs [41,42]. The
fact that time-frequency approaches produce a single-trial
estimate that accounts for both phase-locked and non-phase-
locked event-related responses also contributes to the effi-
ciency of this denoising approach.
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