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Abstract--The human brainstem is a highly complex structure where even small 
lesions can give rise to a variety of symptoms and outward signs. Localising the area 
of dysfunction within the brainstem is often a difficult task. To make Iocalisation 
easier, a neural net system has been developed which uses 72 clinical and 
neurophysiological data inputs to provide a display (using 5268 voxels) on a three- 
dimensional model of the human brainstem. The net was trained by means of a 
back-propagation algorithm, over a pool of 580 example cases. Assessed on 200 test 
cases, the net correctly Iocalised 83.6% of the target voxels; furthermore the net 
correctly Iocalised the lesions in 31 out of 37 patients. Because this computer- 
assisted method provides reliable and quantitative Iocalisation of brainstem areas 
of dysfunction and can be used as a 3D interactive functional atlas, it is expected to 
prove useful as a diagnostic tool for assessing focal brainstem lesions. 
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1 Introduction 

THE HUMAN brainstem is a small structure that performs 
hundreds of functions. Here, in closely arranged groups lie the 
nuclei and rootlets of the cranial nerves, and the long pathways 
interconnecting the brain, cerebellum, and spinal cord. Focal 
lesions in the brainstem can give rise to an array of symptoms 
and outward signs. In clinical practice, localising a brainstem 
lesion is often a hard task even for an expert neurologist. 
Although magnetic resonance imaging (MRI) is helpful, areas 
of abnormal MRI signal do not necessarily imply tissue damage 
or dysfunction. Conversely, areas of actual dysfunction may 
escape MRI detection. The functional correlation of MRI 
findings is notably poor in inflammatory diseases of the brain- 
stem (ORMEROD et al., 1984; CAPRA et al., 1989; TURANO et al., 
1991). Neurophysiological investigations (evoked potentials 
and trigeminal reflexes) add important topodiagnostic informa- 
tion not obtainable by clinical examination alone (CAPLAN et  al., 
1993; ONGERBOER DE VISSER and CRUCCU, 1993; HOPF, 1994; 
KIMURA et al., 1994). But integrating the information from the 
various neurophysiological tests requires expert neurophysiolo- 
gists with specialised knowledge of the brainstem (CRUCCU and 
DEUSCHL, 2000). 

Localising the site of brainstem dysfunction is therefore a 
complex task that encompasses clinical symptoms, neurophy- 
siological responses and the possible involvement of brainstem 
structures. 
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Our aim was to solve the clinical problem of integrating all 
this information to help localise focal brainstem lesions. To do 
so, a computer-aided tool was developed using a three-dimen- 
sional (3D) model of the brainstem and a neural net. A neural net 
was chosen because connectionist systems have proved valuable 
in performing arbitrary mapping between highly complex 
input/output spaces, while exhibiting other desirable properties 
such as inductive generalisation and gentle degradation 
(FELDMAN and BALLARD, 1982; RUMELHART et al., 1986; 
GROSSBERG, 1988; KOHONEN, 1990; SIMPSON, 1990; MILLER 
et al., 1992; BISHOP, 1995). 

2 System architecture 

Using data from topometric and stereotactic atlases 
(SHALTENBRAND and WAHEM, 1977; PAXINOS and HUANG, 
1995; KRETSCHMANN and WEINRICH, 1998), we developed an 
idealised 3D model of the brainstem subdivided into 5268 
volume elements ('voxels') ranging from 2 x2 x 2 m m  to 
2 x2 x 4 m m  (Fig. 1). 

Input to the neural net comprised 72 clinical and neurophy- 
siological data items (see below and Table 1 ), 36 for the left side 
of the body and 36 for the right side, each having one of four 
possible binary values: 0 0 = n o t  available; 01=normal;  
10 = abnormal; and 11 = uncertain. These values were fed into 
the input layer of the neural net program, which computed and 
output 5268 floating-point values in the range 0-1 for each of the 
5268 voxels. Value 1 stood for a voxel certainly affected by the 
lesion, value 0 for a voxel certainly unaffected, with fractional 
values for intermediate probabilities (local probability of lesion, 
LPL) that the given voxel was affected. 

Each voxel was colour-coded according to its LPL and 
displayed at its proper location in the brainstem model, creating 
a 3D colour map of the whole functional lesion in the brainstem 
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Fig. 1 Framework o f  the brainstem model: fi'ont view (left) and 
lateral view O'ighO 

(Fig. 2). This model could be freely rotated and enlarged or 
reduced ( 'zoomed') to examine the lesion from any desired 
angle and apparent distance. From the 3D model, 2D slices could 
be extracted along any of the three main section planes, and 
further elaborated graphically to smooth the boundaries (Fig. 3). 
For pictorial purposes the results can also be exported to a 
computer-assisted design and/or rendering program, such as 
Autocad 'g' or 3D Studio'~ to be converted into a solid, smooth 
3D image. 

This software system can be run on any computer with a 
24-bit colour display having at least 800 x 600 pixel resolutio 9, 
under a 32-bit Windows '~' operating system (Windows95 '~', 
Windows98 +, WindowsNT'~). The network size is about 
4 Mb but 16 Mb random access memory is desirable to ensure 
fast and smooth graphics. 

The masseter inhibitory reflex elicited by perioral electrical 
stimulations is a trigemino-trigeminal reflex consisting of an 
early (SP1) and late component (SP2). SP1 is mediated by a 
short, bilateral, pontine circuit. SP2 is mediated by a long, 
bilateral, pontomedullary circuit, impulses for the contralateral 
response cross at the level of  the pontomedtdlary junction 
(ONGERBOER DE VISSER et al., 1990; CRUCCU and 
ONGERBOER DE VISSER, 1999). The blink reflex elicited by 
electrical stimulation of the supraorbital nerve is a trigemino- 
facial reflex consisting of an early (R1) and a late (R2) 
component. R1 is a mediated by a short, unilateral pontine 
circuit. R2 is mediated by a long, bilateral medullary (down to 
the caudal medtdla-rostral spinal cord) circuit, impulses cross in 
the mid medulla, atthe level of  the obex (ONGERBOER DE VISSER 
and CRUCCU, 1993; CRUCCU and DEUSCHL, 2000). The brain- 
stem auditory evoked potentials, evoked by acoustic stimuli and 
recorded from the scalp, consist of  several far-field waves: wave 
iii is generated in the lower pons, wave IV in the lateral 
lemniscus, and wave V in the lower colliculus (DEUSCHL and 
EISEN, 1999). The motor evoked potentials are elicited in facial 
and limb muscles by transcranial magnetic stimulation of the 
motor cortex. The descending volleys travel along the cortico- 
bulbar and corticospinal tracts in the ventral brainstem 
(DEUSCHL and EISEN, 1999). The somatosensory evoked poten- 
tials are evoked by electrical stimulation of the median or tibial 
nerves and recorded from the scalp. The ascending volleys travel 
along the dorsal columns up to the dorsal medulla, then are 
relayed to the medial lemniscus, cross the midline and ascend in 
the brainstem tegmentum up to the thalamus (DEUSCHL and 
EISEN, 1999). Laser evoked potentials are evoked by laser 
stimulation of the hairy skin. The ascending volleys travel in 
the spinothalamic tract through the whole caudal-rostral brain- 
stem tegmentum, without crossing the midline (BROMM and 
TREEDE, 1991; ARENDT-NIELSEN, 1994). 

3 Functional input data 

Of the 36 input data, 23 were standard clinical signs and 
symptoms of brainstem dysfunction (Table 1). The 13 neuro- 
physiological items were obtained by trigeminal reflex and 
evoked potential testing (CAPLAN et al., 1993). The jaw jerk 
elicited by taps to the chin is a trigemino-trigeminal reflex 
mediated by a short, unilateral pontomesencephalic circuit 
(HOPF, 1994; CRUCCU and ONGERBOER DE VISSER, 1999). 

4 Preparation of the example cases and test cases 

To train the net, we prepared 780 example cases, representa- 
tive of the main possible combinations of symptoms and 
neurophysiological findings, and of the most typical brainstem 
lesions. All cases had only one focal lesion. 

A two-step process was used. First, images of  focal brainstem 
lesions were collected from the existing literature and transposed 
on the proposed brainstem model. For each case, a local 
probability of  lesion (LPL) was assigned to each voxel on a 
three-value scale: 0 = unaffected; 0.5 = uncertain; and 
1 = affected. These voxels were the target array of the neural 
net for that case. The input data of  each case were also fed with 
the available clinical-neurophysiological information. Second, 
the cases (with both the probabilities of lesion and clinical- 
neurophysiological information) were submitted to three experts 
in brainstem anatomy and brainstem neurophysiology, who 
were asked to judge whether the lesion and the functional data 
of each case were indeed compatible. The cases approved by the 
experts were finally accepted for the net training. 

Of the 780 example cases, 200 were chosen randomly and 
transferred from the training set to the test set (BISHOP, 1995), 
the remaining 580 example cases constituted the training set. 

Fig. 2 
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3D reconstruction o f  the ftmctional lesion in a patient with a 
lateral medullary il~arction (W_allenberg's syndrome) 

5 Network topology and training 

We chose a multi-layered, feedforward, fully connected 
neural network with two hidden layers, trained by back-propa- 
gation (RUMEEHART et al., 1986). 
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Table 1 Items o f  Jimctional illpltt 

Clinical examination Neurophysiological tests 

Oculomotor nerve palsy 
Trochleax nerve palsy 
Abducens nerve palsy 
Internuclear ophthalmoplegia 
Trigeminal hypesthesia 
Trigeminal pain 
Trigeminal neuralgia 
Facial nerve palsy 
Hearing dismrbaxmes 
Dizziness 
Eateral propulsion 
Nystagmus 
Rotatory nystagmus 
Nystagmoid movements 
Dysphagia dysphonia dysaxthria 
Pharyngeal reflex suppression (unilateral) 
Vocal cord palsy (unilateral) 
Accessory nerve palsy 
Hypoglossal nerve palsy 
Pyramidal syndrome 
Eemniscal sensory disturbance 
Spinothalamic sensory disturbance 
Ataxia 

Jaw jerk 
SP1 masseter inhibitory reflex 
SP1 masseter inhibitory reflex 
SPI-SP2 crossed abnormality 
R1 blink reflex 
R2 blink reflex (afferent abnormality) 
R2 blink reflex (efferent abnormality) 
R2 blink reflex (crossed abnormality) 
BAEP* III wave 
BAEP* V wave 
Motor evoked potentials 
Somatosensory evoked potentials 
Easer evoked potentials 

* BAEP: brainstem auditory evoked potential 

The net had 148 input units (because the 74 input data were 
binary coded), 50 units in the first hidden layer, 150 units in the 
second hidden layer, and 2634 units in the output layer. By 
exploiting the functional right-left symmetry o f  the brainstem 
and a two-step process, we were able to reduce the output units to 
one half the 5268 voxels in the model: in a first step, the net, fed 
with all the right and left input data, computed the output values 
for the left-sided voxels: in a second step the net was fed with 
right-left inverted input data, and the output values, right-left 
inverted, were assigned to the right-sided voxels. 

The net used a linear transfer function from the input layer to 
the first hidden layer and a sigmoid function for the other layers. 

The net was trained until every voxel 's  LPL came within 0.25 
o f  the target value. 

To train the net we used the commercial program Qnet + 2.1, 
which allowed automatic adjustment o f  the learning rate. On a 
Pentium ii 350 MHz computer, working night and day, training 
took about one month. 

6 Results 

When training stopped, the root mean square of  the output 
error had stabilised at a level lower than 0.002. The correlation 
between the targets and outputs in the training set reached 0.999 
(R correlation coefficient). 

We also cross-validated the net with the set o f  200 'unknown'  
test cases that had been randomly chosen and excluded from the 
training set (see above). The LPL error 'e '  for each single voxel 
was computed as: e = output value minus target value. False 
positive errors ranged from 0 to 1 and false negative errors 
ranged from 0 to - 1 .  Error frequencies were grouped into 
classes 0.25 wide (Table 2). More than 80% ofvoxels  (83.6%) 
showed an absolute error lower than 0.25. 

This kind of  error evaluation lacks spatial information (see 
Discussion). To provide information on the spatial errors, we 
also computed, for any voxel having an output value 'V '  with an 
absolute error higher than 0.25, its spatial distance from the 
nearest voxel having a target value wi th in+ 0.25 from 'V' .  Out 
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of  173 001 voxels having absolute errors equal to or higher than 
0.25, 131481 (76%) showed a spatial distance o f  1 voxel 
(neighboufing voxels) and 38060 (22%) a distance o f  2 
voxels. This distinction suggests that apparently high errors 
might in reality reflect relatively small spatial displacements in 
the LPL (98% were located within 2 voxels). 

After net validation with the set o f  test cases, the method was 
used in a retrospective study of  40 patients from our neurological 
division. Patients with one focal brainstem lesion were selected 
and patients with multiple sclerosis or mmours were excluded as 
they are expected to yield a poor anatomical-functional correla- 
tion. The net was fed with the available clinical and neurophy- 
siological data of  each case. The 3D functional lesion produced 
by the net was submitted to the opinion of  an expert who 
compared it with the clinical notes and the available neuroima- 
ging pictures. 

The expert judged the output o f  the net correct in 31 cases, in 
six cases, only having clinical and neurophysiological signs o f  
impairment o f  the motor or sensory pathways on one side 
(unilateral pyramidal or somatosensory syndromes), the net 
assigned a uniformly low LPL to all the voxels of  the involved 
corticospinal or somatosensory tract. In three cases the expert 
judged the input data insufficient. 

Table 2 Distribution o f  error fi'equencies 

Error (e) Number of Percentage of 
voxels voxels 

-1  <e  < -0.75 0 0 
-0.75 < e _< -0.50 15593 1.48 
-0.50 < e _< -0.25 93665 8.89 
-0.25 < e< 0 413117 39.21 
p _< e< 0.25 467482 44.37 
0.25 _< e<0.50 55209 5.24 
0.50 _< e<0.75 8534 0.81 
0.75 _< e < l  0 0 
Total 1053600 100 
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Fig. 3 Two-dimensional display (after smoothing) oil the axial (upper left), sagittal (lower left), and coronal (lower righO planes, o f  the 
functional lesion shown in Fig. 2. The thick line on the sagittal fi'ame (upper righO indicates the level o f  the axial section. The colour 
scale represents the local probabilio: o f  lesion (LPL), increasing fi'om blue to red. The cursor in the middle o f  the red areas indicates the 
maximum LPL (79%) 

7 Discussion 

While neural networks are by no means a novelty in auto- 
mated diagnostic systems (SHARPE and CALEB, 1994; YANG 
et al., 1994; ACCORNERO and CAPOZZA, 1995; ARMONI, 1998), 
the diagnostic task presented is unusual because it entails 
topographic rather than semantic diagnosis. In conventional 
diagnostic systems, numerical outputs represent the likelihood 
that the various nosographic entities considered will be true in 
the observed subject. In our system, instead of an 'abstract' 
nosographic probability, each probability had to be assigned a 
small, well localised spatial point in a nervous system. 

Quantitatively, this difference raised the number of  outputs 
from several tens to several thousands. From a conceptual 
point of  view, it also required the diagnostic system to solve 
interesting problems about the spatial relations among the 
various outputs. These exigencies led us to decide against a 
traditional expert system and to use a connectionist system. 

To keep the neural net size small a solution was applied that 
had proved useful in an earlier study (AcCORNERO and 
CAPOZZA, 1995). Because, unlike the cerebral hemispheres, 
brainstem functions are right-left symmetric (HAaNAD et al., 
1977), we decided to use a net that diagnosed only one side o fthe 
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brainstem, covering the entire organ by activating the net a 
second time after exchanging input and output data sides. The 
number o f  input units remained unchanged, because the net 
obviously needed to be 'aware'  of  the clinical and neurophysio- 
logical data from both sides o f  the body at any single activation. 
This procedure halved the number of  output units, thus reducing 
the amount o f  memory required. Economy was not the only 
reason for this arrangement. To a net considering a single side o f  
the brainstem, each example case had a double value, because it 
provided two examples, one for the left and one for the right side. 
This resulted in virtually doubling the size o f  the example set. 

The 74 input data were binary coded. Because the input data 
ranged on four possible categories, each input needed 2 bits and 
the number o f  input units was therefore 148. The alternative, 
coding each datum as a single real number, seemed unacceptable 
because it would have implied the use o f  an interval scale to 
encode the four possible values, i.e. an interval relation between 
nominal values. After empirical tests using a wide range of  
values, the number o f  hidden units was kept as small as possible 
to facilitate generalisation (ANSHELEVICH et al., 1989; BAUM 
and HAUSSLER, 1989). The 2634 output units were obviously 
determined by the number ofvoxels required for each half o f  our 
brainstem model. 

A point o f  importance in assessing the net's performance is 
that any spatial error may lead to a double LPL error. Let us 
assume, for example, that a given voxel had a target LPL value o f  
1, but the net assigned that value to a neighbouring voxel, and a 
different value to the given voxel. This would result in a double 
LPL error (one in the given voxel and one in the neighbouring 
voxel). In this example, the network software correctly 
computed the LPL quantitatively, but instead o f  assigning it to 
the correct voxel erroneously shifted it to a neighbouring voxel. 
Assessing these spatial errors was difficult, because we had no 
way of  finding out whether the net's LPL for a given voxel was 
actually a 'shifted' value. Nor could we identify the 'original' 
voxel for that value, if  any. Hence, we had to verify whether any 
mistaken voxel (i.e. any voxel having an absolute error equal or 
higher than 0.25) was located within a distance o f  1 or 2 voxels 
from another location where that value would have been 
acceptable (i.e. absolute error lower than 0.25). This analysis 
showed that most grossly mistaken voxels were spatial errors 
from neighbouring voxels (98% when considering neighbours 
up to a distance o f  2 voxels, i.e. 4mm). 

Unlike some other studies designed to solve a clinical problem 
by applying a neural net approach, in assessing the reliability o f  
the net we could not use real patients as test cases. Traditionally, 
anatomical-functional correlation studies have always relied on 
pathological findings. To collect a sufficient number o f  autopsies 
was beyond the scope of  this study. Furthermore, the wide time 
interval elapsing between the functional examination and death 
may corrupt the findings (MASIYAMA et al., 1985; ONGERBOER 
DE VISSER et al., 1990). Although MRI is far more readily 
available and timely, it often provides an insufficient correlation 
between the areas o f  abnormal signal and the actual areas o f  
dysfunction in the brainstem (BYRNE et al., 1989; CAPRA et al., 
1989; CRUCCU and DEUSCHL, 2000). Indeed, the search for a 
way to overcome the poor ability o f  MRI in localising and 
quantifying the functional lesion in some diseases prompted us 
to develop this project. Instead, we relied on net cross-validation 
with the test cases subtracted from the training set. We also asked 
an expert to test qualitatively how the net performed on a 
retrospective group of  patients with focal brainstem lesions 
secondary to diseases that are expected to provide a good 
anatomical/functional correlation. The net performed well. As 
well as yielding the correct output in most cases it failed only 
when it received too few data. In particular, when the patient had 
only dysfunction o f  the ascending or descending pathways in the 
ventral brainstem, unaccompanied by a clinical or neurophysio- 

logical abnormality indicating the cranial nerves or nuclei or the 
reflex pathways in the dorsal brainstem, the net could not locate 
the lesion rostral-caudally and assigned a low probability 
distributed along the pathway. Human experts have exactly the 
same difficulty. 

In a furore study we intend to compare quantitatively the 
correlation between the areas o f  abnormal signal yielded by MRI 
with the areas o f  dysfunction yielded by our neural network, in 
patients with ischaemic infarction (expected to provide a good 
correlation) and in patients with multiple sclerosis (expected to 
provide a poor correlation). 
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