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Body-part-centered response fields are pervasive in single neurons,

functional magnetic resonance imaging, electroencephalography and
behavior, but there is no unifying formal explanation of their origins and
role. Inthe present study, we used reinforcement learning and artificial
neural networks to demonstrate that body-part-centered fields do not
simply reflect stimulus configuration, but rather action value: they naturally
arise from the basic assumption that agents often experience positive or
negative reward after contacting environmental objects. This perspective
successfully reproduces experimental findings that are foundational in

the peripersonal space literature. It also suggests that peripersonal fields
provide building blocks that create amodular model of the world near

the agent: an egocentric value map. This concept is strongly supported by
the emergent modularity that we observed in our artificial networks.

The short-term, close-range, egocentric map is analogous to the long-term,
long-range, allocentric hippocampal map. This perspective fits empirical
data from multiple experiments, provides testable predictions and
accommodates existing explanations of peripersonal fields.

Many neural and behavioral responses have a spatial component.
Among the most illuminating examples is the activity of place and
grid cells. These cells, located in the hippocampus and entorhinal
cortex, explicitly encode an animal’s allocentric position within its
environment'.

Our understanding of these cells has been substantially enriched
by attempts to formally describe their activity patterns*. Anexample
of particular relevance to this work comes from the exchange of ideas
between neuroscience and reinforcement learning?, which suggested
thatallocentric place and grid responses—responses with areference
frame anchored to the environment rather than to the individual—are
not purely spatial. Rather, they might provide amore general descrip-
tion of the world in terms of its future states’, to facilitate interactions
with the environment at the scale of locomotion and navigation to

distant objects?. It follows that allocentric spatial responses might
provide an effective substrate for navigation in not only physical, but
also abstract, mental environments, even when facing new tasks>*.
Empirical work has confirmed these predictions in humans and other
animals’. Clearly, the substantial efforts to formally understand the
computational mechanisms underlying allocentric responses have
beenenormously valuable.

In contrast, certain egocentric responses have been less stud-
ied, both empirically and theoretically. Anchored to body parts, and
dependent on the spatial proximity between stimuli and those body
parts, these measures form peripersonal response fields® . Periper-
sonal fields are recorded from macaque single neurons”, human and
nonhuman functional magnetic resonance imaging (fFMRI)", electroen-
cephalography (EEG)""” and behavioral responses™*. This prevalence
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across scales and measures makes themexcellent candidates for study-
ing system-level neuroscience. Nevertheless, formal theories of the
function and origin of peripersonal fields remain underdeveloped®.

Current models suggest that peripersonal fields reflect diverse and
sometimes vaguely defined concepts such as the sense of self, future
self-location, impact prediction and multisensory representation of
space®"'®, The few attempts to formalize peripersonal fields have
largely focused on perceptual aspects’ 2, leaving several features unex-
plained. For example, existing models often do not take into account
the effects of environmental dynamics, motor repertoire and stimulus
valence. A precise and unifying mathematical formalism reflecting a
complete functional understanding of peripersonal fields is lacking.

In the present study, we demonstrate, both analytically and in
silico, how areinforcement learning perspective can explain the ori-
ginand function of peripersonal fields. These fields naturally emerge
from action value, under the simple assumption that agents often
experience positive or negative reward after contact with objects.
The resulting action values—which can be thought of as the utility of
potential motor plans—form body-part-centered fields that resemble
biological peripersonal responses.

We further demonstrate that body-part-centered value fields
can be the building blocks for an egocentric map of the world near
the agent in terms of its short-term future states. This egocentric
value-based mapping, a generalization of the concept of a succes-
sor representation, is analogous to the function of place cells, which
provide anallocentric map of the more distant world for longer-term
locomotion and navigation. The activity of a particular group of place
cells suggests a trajectory of the agent through allocentric space’,
whereas activity of agroup of peripersonal neurons would suggest a
trajectory of an object through egocentric space, coded in terms of
the actions that the object affords®. We show that such an egocen-
tric value map offers a statistically robust fit for a wide spectrum of
empirical datafrom multiple research groups and subsumes existing
interpretations and formal models of peripersonal fields. Finally, we
demonstrate that even simple reinforcement learning agents could
successfully adopt egocentric maps, by capitalizing on the natural
tendency of artificial neural networks (ANNs) to form task-specialized
subnetworks.

Results

Body-part-centered fields emerge from rewarded contact
Animals navigating the world often experience reward or punishment
asaconsequence of their actions. Touching a hot stove hurts and grasp-
inganappleisnecessary for the pleasure of eatingit. Thus, making or
avoiding contact with objects often carries value (Fig.1aand Extended
DataFig.1). We contend that this simple fact fully accounts for the emer-
gence of receptive fields centered around body parts. In this section,
we demonstrate this possibility theoretically under a reinforcement
learning framework (Supplementary Information 1and 2) and then
recreate canonical characteristics of peripersonal fields in ANNs.

In areinforcement learning model of an agent interacting with
its environment, the values (Q) of actions that bring a body part into
contact with certain objects correlate with the object’s proximity to
that body part. Plotting those Q values as a function of object position
reveals graded fields surrounding the agent’s limbs (Fig. 1b, Extended
Data Fig. 1and Methods, ‘Tabular reinforcement learning for calcu-
lation of action values Q’). Three key factors create this correlation
between action value and object proximity. Each of these factors can
independently create body-part-centered fields, butall three co-occur
inareinforcementlearning environment:

(1) Proximity in time. The temporal discount factor y reduces the
value of states n time steps away from object-body contact by
V" (Fig. 1b; max |Q" (s, (1| > 0),@)] <max Q" (s, (|| = 0). a)}

where a denotes an action and |d/| is the absolute distance be-
tween the body part and an object at time ¢). Given that object
movement requires time, that is, object distance d, is related to
the number of time steps n before contact, the discount factor y
decreases the values of actions related to distant objects by y".
For example, immediate action is required if a wasp is near your
hand to avoid the ‘negative reward’ of a sting, but the wasp can
safely be ignored if it is meters away. In the simplest scenario, if
the wasp—or any other object—always moves toward the hand
(thatis, P(|d4| < |d¢]) = 1; Fig. 1a), action values are monotoni-
cally related to the distance between the object and the hand d,
(Fig. 1b), forming a body-part-centered receptive field.

(2) World dynamics. In a biologically more plausible case, objects
do not always approach the body. For example, the wasp might
follow some deterministic trajectory, potentially bypassing the
hand. In this case, the probability of contact, and hence the val-
ue of a state, would depend on both the wasp’s location d and its
velocity d (P(|d.,1| < |d,|) = fid,d) and 0 < f(d, d) < 1). Suchdy-
namics create an asymmetrical fall-off of action value around
the hand, because certain positions will not result in contact
(Fig. 1c,d). The wasp might also move stochastically, introduc-
ing uncertainty in the environmental dynamics. In this case, con-
tact is not guaranteed at any point in time and more time will
elapse until contactis made. Therefore, the negative reward due
to contact is weighted less strongly and action value will fall off
more strongly as a function of distance to an object d, along the
direction in which it is traveling (Fig. 1e and Supplementary In-
formation 2). Conversely, uncertainty about the wasp’s move-
ment and position also increases the number of states from
which the wasp can contact the body, and hence laterally ex-
pands the value field (Fig. 1e). Perceptual uncertainties, such as
impaired vision in a dimly lit room, similarly impact action val-
ues by reducing the accuracy of position estimates d (hence-
forth, we will refer to perceptual and environmental uncertainties
collectively as simply ‘uncertainty’). World dynamics therefore
also shape body-part-centered fields®°, yielding maximal action

Fig.1|Rewarded contact explains the origin and properties of body-part-
centered receptive fields. a, Consider asimple one-dimensional environment in
which an object (for example, awasp) always moves toward abody part.
Contactisrewarded (here with a negative reward; r =-1). b, Description of value
calculation, demonstrating the effect of temporal discount in shaping body-part-
centered value fields. The process of learning the value of the action ‘stay still’
(equationat the top). Agents incrementally update the values of the ‘stay’ action
for each possible wasp position, resulting in the optimal description of the value
of staying (‘Final Q values’, right). The value of staying in place forms a graded
body-part-centered receptive field. Each row of line plots reflects a given amount
of temporal discount (y) for future rewards. ¢, World dynamics shape body-part-
centered fields because they affect the positions from which an object can
contact the body. We show results for y = 0.7 in a2D world. Color maps depict the
Qvalue of the action ‘stay still’ as a function of object position relative to the

hand. d, Alternative object trajectories resulting in differently shaped body-part-
centered fields. e, Sensory uncertainty, resulting form sensory noise and/or
stochastic object motion, also changes the perceived positions from which the
object can touch the body. This alters value fields, generally making them more
spatially diffuse. f, An agent which has access to more actions than just staying
still can maximize reward by moving toward objects offering a positive reward
(apple) and away from objects offering a negative reward (wasp). g, The agent’s
motor repertoire also contributes to shaping body-part-centered fields.
Columns show Q values for different actions. Having access to more actions
generally results in smaller body-part-centered fields in response to negative-
reward stimuli, because the agent can avoid them more effectively and hence
expects the negative reward from fewer locations. Conversely, more available
actions allow the agent to reach positive-reward stimuli more easily, thus
expanding body-part-centered fields.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article https://doi.org/10.1038/s41593-025-01958-7

Body-part-centered fields emerge naturally from action value
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ANN no. 1: artificial neurons show body-part centred field
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Fig.2| ANNssubserving interception and avoidance actions demonstrate
canonical properties of peripersonal responses. a, Firing rates from example
‘peripersonal’ neurons with visual receptive fields around the hand and the face
(left and center), prevalent in areas VIP and PZ (right; data from ref. 26). b, Activity
for two example artificial neurons with receptive fields around different artificial
body parts, from an ANN that simultaneously controlled two body parts and was
rewarded for contacting an object. a.u., arbitrary units. ¢, Percentages reflecting
the proportion of units showing body-part-centered activity (Supplementary
Methods 3.2.1).d, Q values output by the ANNs forming larger body-part-
centered fieldsin response to fast (red) rather than slow (blue) stimuli. e, This
expansionis evidenced by the vertical distance at which the value of actions is
closest to the mean (‘field size’). The error bars, boxes and whiskers depict the
s.d., 25th-75th percentiles and 5th-95th percentiles across stimulus x position,
respectively. f, Artificial Q fields expanding in the direction of incoming stimuli
(arrows). g, Most underlying artificial neurons display body-part-centered
receptive fields, many of which are velocity sensitive (Supplementary Methods

3.2.2).h, Anagentlearning to use a tool progressively expands its Q field from
justthe limb, to eventually surrounding the tool tip. Color maps show Q values
atvarious learning stages. Line plots to the left of each colormap are Q averages
along the x dimension. The second row shows the number of Q-field peaks (blue)
and the network performance (red) as a function of learning. Shaded areas show
the s.d. across model instantiations. i, After learning, a Q-field peak appears
around the tip of the tool, but only when the agent holds it. j, Many units in the
underlying ANN show a similar field remapping after training. The pie charts
indicate the proportion of tool-sensitive units (Supplementary Methods 3.2.3).
k, Body-part-centered value fields are enhanced in response to stimuli of higher
(right) versus lower (left) absolute valence. 1, Actions creating or avoiding contact
witha high-valence object are initiated at a further distance from the body.
Shading depicts the s.d. across stimulus x position. m, Artificial neurons are more
responsive to higher-valence stimuli. The histogram shows the difference in
responsiveness to stimuli of two valence magnitudes (Supplementary Methods
3.2.4).Panels a (left) and b adapted from ref. 26, American Physiological Society.

value when the object is near a body part, where probability of
contact is highest.

(3) Action repertoire. The agent’s action repertoire also shapes
body-part-centered fields, influencing the distance to an object
(d,; Fig. 1f,g). As Q values for current actions take into account
potential actions that can be made in the future (Supplementary
Information 2), it follows that body-part-centered fields can also

appear in response to static stimuli: even if the wasp is station-
ary, we can reach out to swat it away.

Importantly, there are many different body-part-centered fields
that eachreflect the value of different actions. For example, when faced
with a distant wasp, we might not want to move our hand, but rather
feel the urge to walk away. The value of walking away supersedes that
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of moving alimb. The ‘walk-away field’ would be centered on the whole
body and expand far into space, whereas the ‘move hand out the way’
field would be centered on the hand and expand less®. We provide a
demonstration of the interactions between the values of different
actiontypes and their dependences on stimulus distance in this wasp
scenario in Supplementary Fig. 1.

Insummary, the interaction with objects thatyield rewards, even
indirectly (Extended Data Fig. 1), naturally leads to the formation of
body-part-centered fields reflecting action values.

Body-part-centered fields in ANNs resemble their biological
counterparts

Despite its simplicity, the principle that object-body contact is
rewarded or punished accounts for many behavioral and neurophysi-
ological results. In this section, we show that multiple canonical proper-
ties of peripersonal fields (Fig. 2a) emerge naturally in ANNs trained to
make or avoid contact with environmental stimuli (Fig. 2b,c).

We trained a set of ANNs to move one or two body parts in a
two-dimensional (2D) grid world. Precise details about these ANN
models—each exposed to an environment designed to test several
canonical properties of peripersonal fields—are provided in Supple-
mentary Methods 3.2. Briefly, in all models an agent, controlled by an
ANN, outputs Q values for three possible actions per limb: move left,
stay still or move right (Fig. 2¢c; ‘L, ‘S’, ‘R’ units, respectively). The agent
performsthe action with the highest Qvalue. The ANN inputs are the x
position of its body parts and the x and y positions of external objects
(Fig. 2¢; ‘b’, ‘X, 'y’ units, respectively). These objects appear at the
extreme end of the grid world opposite the agent and generally move
toward the agent’s side, with some additional random motion ateach
time step. The exact speeds and trajectories differ slightly between
models (see Methods, ANN models’ and Supplementary Information
3.2.2 for details). An object can be either a ‘goal’ or a ‘threat’. Limb
contact with agoal or athreat resultsin a positive or negative reward,
respectively. For each model we ran multiple ANN architectures to
test the consistency of experimental results across different network
types (Methods ‘ANN models’). This approach deliberately abstracts
over physiological details, without making specific claims about what
type of neurophysiological network mechanisms create biological
peripsersonal fields. Instead, our approach demonstrates that the
results obtained in biological systems can be normatively explained
from simple assumptions.

The ANNsrecreated multiple foundational experimental findings
describing canonical peripersonal fields:

(1) They are body-part centered, remaining anchored to abody part
when it moves®’?10%52

(2) They reshape depending on both stimulus speed and direction
relative to the body part®** 2

(3) They expand with tool use, but only after some initial experience
with the tool”*

(4) They expand in response to stimuli of stronger valence**°

Artificial agents produce receptive fields anchored to a limb. In
ANNmodelno.1, we tested whether body-part-centered fields emerge
from action value (Methods, ‘Base ANN model” and Supplementary
Information 3.2.1). Action values consistently correlated with limb-
object proximity (P<7.97 x107,all|p| > 0.086, mean |p| = 0.509 + 0.171
(s.d.); falserecoveryrate (FDR)-corrected Pearson’s correlation tests).
A substantial proportion of artificial neurons also showed
body-part-centered receptive fields, regardless of network architecture
and number of limbs (51 + 9%; Fig. 2b,c and Extended Data Fig. 2; see
Supplementary Methods 3.2.1 for a description of network architec-
tures tested and their rationales). These units predominated in later
network layers (‘layer depth’increased their proportion by 36.0% (95%
confidence interval (Cl) =26.0-46.1%), P=1.56 x 107, t =7.081,
rzf, =0.249, 62 degrees of freedom; linear mixed effects (LME) main

effect of layer depth, 68 + 21% of units being body-part centric in the
last layer; Fig. 2c). We found qualitatively identical results when learn-
ing was performed on-policy using SARSA (Supplementary Fig.1).

Stimulus dynamics reshape artificial body-part-centered fields.
In ANN model no. 2 we exposed agents to stimuli moving at differ-
ent speeds and directions (Methods, ‘Model variations’ and Sup-
plementary Methods 3.2.2). Action-value fields expanded when
stimulimoved faster (P<8.46 x 1073, all p > 0.42, mean p = 0.494 + 0.042;
FDR-corrected Pearson’s correlation tests; Fig. 2d,e), particularly in the
direction from which stimuli approached (P<3.24 10, all p > 0.85,
mean p =0.910 + 0.064; FDR-corrected Pearson’s correlation tests;
Fig. 2f). The extent of receptive fields of individual artificial neurons
similarly correlated with stimulus speed and direction (the receptive
field extent of 26 + 6% of units correlated with vertical movement
speed, while 76 + 8% of units expanded in the horizontal direction of
movement and 20 + 6% of unit activity correlated with both; Fig. 2g).

Tool use reshapes artificial body-part-centered fields. In ANN model
no. 3 we gradually exposed agents to simulated tool use (Methods,
‘Modelvariations’and Supplementary Methods 3.2.3). As agents gained
more experience with the tool, the number of action-value field
peaks increased from 1 to 2 (P<7.57 x107%, all p > 0.272, mean
p=0.309 £ 0.035; FDR-corrected Pearson’s correlation tests; Fig. 2h),
with anewreceptive field forming around the tool tip. After 50 training
periods, the presence or absence of the tool strongly affected the value
fields (1.5 + 0.5 versus 2.0 + 0.0 peaks in the value field: P=3.74 x 105,
Z=-4.1,effect size r=-0.69; approximate Wilcoxon’s signed-rank test;
Fig. 2i). Asubstantial proportion of units within the networks showed
the same type of variationin their receptive fields as a function of tool
use and training (42 + 6%; Fig. 2j). This was especially true in deeper
network layers, where units were closer to representing action value
(‘layer depth’increased the proportion of tool neurons by 69.0% (95%
Cl=34.0-100.0%), P=8.81x107*,t=4.29, r]lz, = 0.355,13 degrees of
freedom.; LME main effect of layer depth; Fig. 2j).

Reward magnitude alters artificial body-part-centered fields.
In ANN model no. 4 we investigated whether stimuli with higher
valence elicit stronger responses in artificial units and yield larger
body-part-centered fields. We varied the value of the reward r,(Meth-
ods, ‘Model variations’and Supplementary Methods 3.2.4), and found
thatallagents showed larger output Qvalues for higher reward stimuli
(allP<4.76 x107°, all |z-score| = 5.86, mean |z-score| =11.3 + 7.0, all effect
size |r| =2 0.096; FDR-corrected Wilcoxon’s signed-rank test; Fig. 2k).
Consequently, actions related to intercepting a higher reward stimu-
lus were initiated when the stimulus was at greater distances fromthe
body (all P=9.77 x 107, all |z-score| > 3.317, mean |z-score| = 3.51 + 0.17,
all effect size |r| = 0.65; FDR-corrected Wilcoxon’s signed-rank tests;
Fig. 21). Individual units were more affected by the position of
high-reward than low-reward stimuli (P=6.2 x 107, z-score =2.738,
effect size r=0.299; Wilcoxon’s signed-rank test; Fig. 2m).

Multiple peripersonal fields can form an egocentric map
Having demonstrated that contact value creates body-part-centered
value fields both theoretically (Fig. 1) and in ANNs (Fig. 2), we next
integrated this knowledge with theoretical work on model-based rein-
forcement learning and generalized policy improvement**-*2, Such
theories address a common challenge in decision-making: the rapid
changes of context and environment. Recomputing action values in
response to each change is not only inefficient, but risks overwriting
previously learned associations.

Collections of peripersonal neurons form successor features. One
solution liesinusinga predictive model of the world, rather thanlearn-
ing each task from scratch. This approach, known as model-based

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-01958-7

a Goal network

A set of peripersonal value fields can be used as a
T b )
Q.0 __0
% ::::::::-

i

e 0
!

W1 threat

W) threat

WN threat

Q”Qoal

anjep

IIMII

C Threat network Recycled goal network
(X} @ b}
000000000000

0000000000
‘Tﬁﬂmoooooooo ]

Qe sl

1.0 | ,/

o5} i
of #

Value

-0.5
/ﬂao 0.51.0 1.5 2.0

-2 Real threat values

Fig.3|A collection of body-part-centered value fields canbe used as a

successor feature ™. a, Successor features " used to create action

values thr for anew reward configuration (thr) and hence new task

(Glossary, Supplementary Information1). In this example the new task (‘thr’)

consists of responding to an object offering negative reward: a threat.

Top, basic equation describing linear feature recombination to create new

actionvalues thr Middle, asuccessor feature lp" canbe composed of NQ-value

approximations [Q", a;’, s am Bottom, this recombination can be envisioned
asaone-layer ANN in which all Nbasis units contribute to the activity of an output
unit represemmg Qvalue for the new task ‘thr’. b, Approximate successor
features lp can be composed of ANN units with body-part-centered receptive
fields. Although the formal theory behind successor features assumes that the
NQvaluesrepresent N different reward configurations, here we instead used
JTJ”g‘””, acollection of neurons that offer multiple approximations of action value
for asingle reward configuration ‘goal’. The reward configuration ‘goal’is defined
as the situation in which an object offers a positive reward. The optimal Q values
for that reward configuration and the resulting task are shown in the colormap
belowas Q. g‘”" .c, An ANN that has only learned to intercept positive-reward
stimulican be recycled’ to approximate an appropriate value field for avoidance
actions. The output of the red threat network (QZ::‘;:?‘) could bereconstructed by
taking a weighted sum over § 5% that s, a sum over the neural activities in the
second half of the blue goal network. As this reconstruction uses successor
features froma network trained to intercept only goals, we label the
reconstructed action values as @ £ The scatter plot shows the Qvalues

threat®
calculated by the threat-specific network Q h”"eat (xaxis) plotted against the

Reconstructed
threat values

recycled Qvalues from the goal network Qﬂi‘:'t (yaxis).

reinforcement learning, enables agents to forecast expected rewards
for new reward configurations by mapping them on to anticipated
states and thereby enables estimation of appropriate action values.
Among the solutions for implementing model-based reinforcement
learning, the world model offered by ‘successor features’ (¢"; which
are generalizations of the concept of asuccessor representation—see

Glossary in Supplementary Information 1) is particularly compelling,
mainly as aresult of its modular nature; individual successor features
arebuildingblocks that canbelearned independently and later recom-
bined to suit new reward configurations (Qﬂ (8p,a) =P (s, a)Tw,- ;
Fig.3a).
This principle of modular recombination should extend to perip-
ersonal value fields, because collections of Q values can be used as

o,

Supplementary Information 1)*". To demonstrate that such recom-
bination is practically feasible and can be performed even with
value-approximating units rather than full value functions, we trained
two networks: network A with only positive-reward stimuli (Fig. 3b)
and network B with only negative-reward stimuli (Fig. 3¢). By linearly
recombining activity from units in layers close to the output layer
(that is, units likely to have body-part-centered receptive fields) from
network A, we successfully approximated the threat value functions
fromnetwork B (P<107™°,p=0.92, FDR-corrected Pearson’s correlation
tests; Fig. 3c and Supplementary Methods 3.2.5). Hence, peripersonal
neurons might constitute building blocks of a short-term predictive
model of the world near the agent, reminiscent of hippocampal place
cells® but working at shorter spatiotemporal scales.

~TIT
successor features (thatis, " ~ = Q"] ; Glossary in

Collections of varied successor features form an egocentric map.
Successor features™ also address a limitation of traditional succes-
sor representations by allowing for generalization beyond learned
policies*. For instance, envision an agent facing new tasks (Fig. 4a)
after having previously learned policies to both intercept and avoid
objects (Fig. 4b). This agent can choose between these two learned
policies and rescale its previously learned action values (that is,

a = argmax max @"k (s,A)" w,; Fig. 4c,d). This immediately creates
A k

an effective set of action values for new tasks, such as intercepting a
goal after amandatory brief pause, evading a threat larger than those
previously encountered, allowing an object to pass ataspecific distance
fromitslimb or dealing with an object that switches between offering
reward and punishmentbased on thelocationinwhichit firstappears
(Fig. 4a, rows 1-4, respectively). Consequently, a comprehensive col-
lection of body-part-centered value fields—especially those acquired
from diverse tasks—can create a highly flexible model of the world near
the body, an egocentric map (¥ = {¢g™, y™, ..., "™}; Fig. 4b).

Having demonstrated that a flexible egocentric map can be con-
structed from value fields, we now show that ANNs trained on multiple
tasks naturally separate into neural architectures that are suitable for
use in egocentric maps.

ANNs naturally separate into task-selective subnetworks. A com-
prehensive egocentric map is more effective if it can differentiate
between tasks, prompting us to investigate under which circum-
stances task-specific modules appear within a network. By expos-
ing 45 agents to 2 distinct tasks simultaneously (interception and
avoidance; Supplementary Methods 3.2.6), we discovered that, after
successful training, nearly all networks developed two spatially seg-
regated subnetworks, favoring either positive- or negative-valence
stimuli (units with similar stimulus preferences were closer to each
other: P<0.05 for 37 of 45 networks, mean ¢ statistic = -5.1+ 4.0,
FDR-corrected main effect of interunit distance on unit similarity
in an LME; Fig. 5a,b). Networks with more subnetwork structure
also achieved greater total reward, suggesting that modularization
is an integral and emergent aspect of successfully learning multi-
ple tasks (P=0.021, p =-0.343 (95% Cl = -0.58 to —0.05); Pearson’s
correlation test between ¢ statistic and average reward per time
step; Fig. 5b). Functionally, almost all networks coded positive- and
negative-valence stimuli in orthogonal subspaces (P < 0.05 for 40
of 45 networks, FDR-corrected bootstrap test with 1,000 samples,
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Egocentric map W | can be used to quickly create policies and action values for new tasks
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Fig. 4| A collection of successor features can be used as an effective map of the
world near the agent: an egocentric value map. a, lllustration of four new tasks,
chosen to demonstrate the mechanism of an egocentric map. Left, task
description. Right, theideal Q values for each of the four new tasks (for the task at
the bottom, we display action value only as a function of position for the specific
timepoint at which the object appears). b, Scheme depicting an egocentric map
W, whichis a collection of successor features. Specifically, W is composed of
Nsuccessor features ¢/, each defined by a particular policy m;. The successor
feature fora policy ; itse}lfcogsists of,?ody-part-centered value fields for Nbase
reward configurations[Qlf, sz, e QA{ ], as suggested by Barreto et al.’. This
example has two successor features (columns) for two reward configurations
(rows). The ‘goal’ policy (thatis, ‘intercept’, m;) is optimal policy when the agent is
rewarded by contact (‘goal’ reward configuration RC,). The ‘threat’ policy (that s,
‘avoid’, m,) is optimal when the agent is punished by contact (‘threat’ reward

configuration RC,). Color maps show the value of the action ‘stay’. ¢, Mathe-
matical formula for recycling an egocentric value map to face anew reward
configuration (and hence task) RC,,. If the agent can estimate action values for
multiple policies onits base reward configurations, and can also switch between
policies m; at each timepoint, it will be able to find the maximally valuable action
foranewtask.d, Ineach state of a new task, the agent selects the policy (left)
which, combined with reweighting its task-specific value maps (right, equations),
results in maximally effective actions. This process creates new Q values (right;
color maps) that approximate the ideal Q values for each of the four new tasks
described ina. We computed weights and preferred policies by minimizing the
difference between the approximate (d) and ideal (a) Q values for each new task.
Inanagent, these weights are probably learned by a slower, but more realistic,
process that doesn’t require access to the optimal Q values™.

against the null hypothesis that the angle between encoding direc-
tions diverged >15° from 90°, mean = 95.2° + 10.6°; Fig. 5¢).

The emergence of this subnetwork structure and orthogonal
coding was not contingent on aspects of network design such as archi-
tecture, regularization and the transfer function of units composing
the network: all network types that performed the tasks successfully
showed subnetwork structure and orthogonal coding (Extended Data
Fig.3a,b,d,e). Furthermore, networks that performed the tasks better
showed more structural and functional modularization (correlation
between structural ¢ statistic and reward per time step: P=4.53 x 107,
p=-0.47 (95% Cl =-0.52 to —0.41); correlation between task-coding
orthogonality and reward per time step: P=1.70 x 10, p = -0.33 (95%
Cl=-0.38t0-0.26); Extended DataFig. 3c,f). Finally, the more modular
networks provided better successor features to reconstruct the optimal

Qvalues for the new tasks shown in Fig. 4a, even after controlling for
the effects of total reward on the trained task (Extended Data Fig.3g,h;
partial correlation between structural ¢ statistic and reconstruction
quality: P=2.67 x10™°, p=-0.13 (95% Cl =—0.17 to —0.09); partial corre-
lation between task-coding orthogonality and reconstruction quality:
P=3.57x10% p=-0.11(95% Cl =-0.45t0 -0.07)).

Thus, the necessary ingredients for egocentric maps emerge natu-
rally eveninsimple ANNs.

Egocentric value maps robustly fit existing empirical data. To statis-
tically assess the ability of egocentric value maps to explain empirical
data, we created an approximate three-dimensional (3D) map around
the upper body and fitted it to empirical results from 23 published
experiments.
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Task-specialized subnetworks appear in ANNs
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Fig. 5| ANNs trained on multiple tasks show architectures conducive

to egocentric maps. a. An ANN trained on simultaneous interception and
avoidance tasks naturally adopting a modular structure, beneficial for use in an
egocentric map (left, network graph). In this example ANN, individual neurons
are classified as threat- or goal-preferring (red and blue, respectively). When
the neuron-to-neuron distance is set to be the inverse of the neuron-to-neuron
connection strength, clear threat- or goal-preferring subnetworks appear

(red and blue backgrounds, respectively). This modular structure is reminiscent
of the primate parieto-premotor system, where peripersonal neurons cluster
together based on their behavioral function (right). b, More subnetwork
structure results in better task performance. Data are from 45 networks trained
onsimultaneous interception and avoidance tasks. Most networks (37 of 45)
showed above-chance subnetwork structure (¢ < -2.5, t statistic of amain effect
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of neuron similarity on neuron-neuron distance; top histogram, blue shaded
area; Supplementary Methods 3.2.6). Right histogram indicates average reward.
¢, Functional modularity in the 45 networks described in b: activity from the
first three principal components of an example network. Goal-proximity coding
(black-to-blue scatter plot) was orthogonal to threat-proximity coding (black-
to-red scatter plot). d, Most networks (38 of 45) show above-chance task coding
orthogonality. Polar axes describe the direction of goal and threat coding.
Angles within £15° of 90° are shaded light blue. AIP, anterior intraparietal area;
F4, premotor area F4; F5, premotor area F5; FEF, frontal eye field; LIP; lateral
intraparietal area; MIP, medial intraparietal area; PEip, intraparietal part of area
PE; PFG, parietal area PFG; PG, parietal area PG; SEF, supplementary eye field;
V6a, visual area 6A; VIP, ventral intraparietal area. Panel a (right) adapted from
ref. 9, Elsevier.

We constructed this egocentric map as the set of action values
related to moving threeindividual body parts (head, torso, hand) when
faced with two reward configurations: goals and threats (Fig. 6a; that
is, m is a collection of approximate Q values for tlT1at body part, for

~” _ ~” ~” ~”
example whand - [ hand up’ Qhand down’ """’ ~hand Sta)’] )

Further details of the egocentric map construction and empiri-
cal data fitting are in Methods, ‘Empirical data fitting’ and Supple-
mentary Methods 3.4. Briefly, we derived a single value representing
egocentric map activity for each experimental condition by first
extracting the maximal absolute Q value across actions and poli-
cies for each body part and then averaging these Q values across
body parts:

NI
1 Ttask
Sexpcond($, @) = N 2 MaXtaskMAXy ‘pbody—part, exp cona$D
body-part=1

(Fig. 6¢).

Note that calculation of the maximal Q value across actions and
policies also occurs whenrecycling the egocentric map for new tasks™
and it can be conceptualized as the competition between affordances
observed in real brains®.

The approximated egocentric map successfully fit the dataacross
allexperiments (P=0.99, x> =122 (95% Cl = 88-159); Fig. 7 and Extended
DataFig. 4; the Pvalue obtained from comparing the x* statistic with the
X distribution is a measure of the confidence that the empirical data
could have been generated by a process similar to the one described
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Data fitting setup

Modelled egocentric map ¥

Action: @ Coal+
Stay I
@ I
i
Reward on contact u ™
@ Goal+1 @ Threat -1 \ji m] s
- ~
c . Down {[
Weighted sum of map activity ¥ N m N
N
S = ¥max,,max,,q [P22dPer (state,act)| j}:\\
bodypart
Left I
e T
Right A
AT
e
d Forward I
Linearly fit to empirical data S p
//> T
. N
d=c,S+c,=d
’g 80
g Back ]
2 a0 i
c "
2 — Datad /K/\// ml
5 O
> - L
£ _40 — Model fitd
0 50 100
Distance (cm) 0

Fig. 6 | Fitting an egocentric map to empirical data: setup and method. a, Setup
for approximating an egocentric map ¥ around the upper body, with the aim of
fitting empirical data. Colored voxels indicate the body locations rewarded
(blue) or punished (red) on contact. b, The approximated egocentric map
included Qvalues for seven actions (rows: stay, up, down, left, right, forwards,
backwards), for each of three body parts (columns: head, torso, hand) and for two
tasks (subcolumns: intercept and avoid). Colored voxels indicate the stimulus
locations where the value of each action was higher than any other (AQ values;

we show values for optimal policies for both tasks). Colors are normalized within
action and task. The lowest 20% of AQ values within action and task are not
shown. ¢, Our framework posits that empirical peripersonal measures reflect a
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single summed estimate of egocentric map activity (S). We extracted S by first
taking the maximal absolute Q value across actions and tasks for each body part
and every pointinspace, and then averaging these three values across body
parts, as specified in the equation. Green voxels represent the resulting summed
map activity. Spheres indicate locations of empirical measurements in an
example experiment in which participants had to react as fast as possible to a
tactile stimulus on the torso while task-irrelevant auditory stimuli moved toward
their torso (seed).d, The summed egocentric map activity Slinearly fits (red) the
example empirical data (blue)", showing reaction time shortening when the
auditory stimuli were closer to the torso (‘RT shortening’)’. The error bars show
S.e.m. across participants. Max., maximum.

inour model.Inother words, if the Pvalue is very small, we must reject
the null hypothesis that our model explains the data, but, if the Pvalue
is very large, we must accept that hypothesis as a possibility*). This
fit, which involves a limited number of parameters, underscores the
model's biological relevance and broad explanatory power. Only alter-
native models thatalso leveraged an egocentric map survived rigorous
statistical tests (Extended Data Fig.4), further affirming the biological
validity of egocentric maps.

Discussion

We have demonstrated that body-part-centered fields naturally emerge
fromactionvalue, under the simple assumption that agents often expe-
rience reward on contact with objects (Fig.1). In artificial agents, such

body-part-centered value fields can be observed in both single-unit
activity and behavior. These fields are sensitive to the same factors that
modulate biological peripersonal fields: stimulus dynamics, tool use
and valence (Fig. 2). Therefore, biological peripersonal fields probably
index contact-action value, as originally hinted by electrophysiology*®
and later suggested theoretically®.

Existing literature also indicates the importance of action value
in creating peripersonal fields. First, canonical peripersonal neurons
are predominantly located in sensorimotor regions such as the puta-
men, ventral intraparietal area (VIP) and dorsal F4 (refs. 7,9) (Figs. 2a
and 5a). Second, chemically and electrically enhancing VIP and F4
activity increases the probability and vigor of defensive actions’. Third,
parieto-premotor areas housing peripersonal neurons are more active
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Fig. 7 | Fitting egocentric maps to empirical data, part1: overall fit and neural
measures. a, The distribution of real (x axis) and fitted (y axis) data along the
identity line, demonstrating that an egocentric map robustly explains all
experimental data. Twenty-three experiments across ten laboratories were
included in total™'**#6-484950_Colors indicate different experiments. For data
fitting methodology, see Extended Data Fig. 4a-e, Methods, ‘Empirical data
fitting’ and Supplementary Methods 3.4.1. b, The real total error (Xf)bs; redline)
superimposed on the probability of observing a theoretical total error * that is
equally large or larger, under the null hypothesis H, that the model explains the
data (P()(gbs > x%|Ho); blue curve). c-h, Empirical data (right in each panel) and
model fits (leftin each panel) from experiments in which neural peripersonal

measures were collected. For data and fits of behavioral measures, see Extended
DataFig. 4f-q. Colors indicate experimental conditions. The shaded surfaces on
figurines show body partsincluded in the egocentric map. The error bars show
thes.e.m. For adetailed description of each fitted experiment, see
Supplementary Methods 3.4.1. ¢, See Supplementary Methods 3.4.1.1 for details.
d, See Supplementary Methods 3.4.1.1for details. e, See Supplementary Methods
3.4.1.2 for details. f, See Supplementary Methods 3.4.1.3 for details. g, See
Supplementary Methods 3.4.1.4 for details. h, See Supplementary Methods
3.4.1.5for details. Panels c and d adapted from ref. 26, American Physiological
Society. Norm., normalized.

in response to stimuli perceived as rewarding®. Fourth, peripersonal
fields expand when higher reward is offered by objects further from
the body**, a phenomenon that is also consistent with value coding
(SupplementaryFig.5and Supplementary Information 3.4.2and 4.2.2).

Incontrastto ouraction-based model, whichreliesonly onasimple
aprioriassumption about the value of contact, most alternative models
require highly specific assumptions about encoded variables or neural
architecture. For example, certain models have predefined multisen-
soryintegration pathways”, whereas others presuppose explicit encod-
ing of impact prediction'?° or multisensory integration'’, without
explaining their necessity.

Despite some recent conceptual improvements of alternative
models?>* (detailed in Supplementary Discussion 3.2), they still fail to
fit the extensive combined dataset for which our action-based model
offers astatistically robust explanation (Extended DataFig. 5). Simple
monotonous decay functions do not fit the data because they lack
theoretical underpinnings and hencerequire additional parameters for
each new experimental condition. The limitations ofimpact prediction
and multisensory integration models, which rely on predicting touch
under uncertainty, are particularly pronounced in 3D environments,
in which fewer trajectories result in contact with the body compared

with lower dimensions. Thisimportant aspect was underappreciated
in prior research, which typically modeled peripersonal fields in only
one or two dimensions'%?* Nevertheless, uncertainty still probably
playsaroleinshaping peripersonalfields, as evidenced by the success
ofaction value models incorporating it (Extended Data Fig. 5). Future
work could explore frameworks like active inference, which explicitly
account for sensory and perceptual uncertainty, potentially offering a
moreintegrated perspective on peripersonal responses®. To provide
physiologicalinsight, such future models should also be tested against
more granular single-cell data.

This article establishes the conceptual foundation for an egocen-
tric value map: multiple body-part-centered value fields can be com-
bined to form successor features that provide a model of the world
near the agentin terms of its action values. Once diverse successor
features and policies have been learned for a set of base tasks, they
can effectively be recombined to face new reward configurations
(Figs. 3 and 4). ANNs containing peripersonal units can therefore
function as egocentric maps, capitalizing on two of their core fea-
tures. First, their individual neurons provide the building blocks of
anegocentric map because they approximate action value. Second,
these ANNs naturally separate into task-specialized subnetworks
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(Fig.5and Extended DataFig. 3), providing a favorable architecture
for amap that requires separation of task-specific action values.

The concept of an egocentric map offers multiple empirically
testable predictions (Supplementary Discussion 5.1) and its validity
is statistically supported by the robust fit of multiple empirical data-
sets (Fig. 7, Extended Data Figs. 4 and 5 and Supplementary Fig. 5).
Egocentric value maps have further theoretical merit. They provide
formalinsightinto previous qualitative theories, which posit that the
perception of the space near the body is constructed from modular
motor schemata””, and support the view of posterior parietal areas
as state estimators utilizing overlapping motor codes®*®. The ego-
centric maps that we propose are inherently modular constructs,
being composed of successor features spanning tasks and policies.
Each successor feature is in turn composed of body-part-centered
value functions, which in practice can be sets of neurons that offer
preliminary value approximations (Fig. 3). This modularity dovetails
the modular structure of the ANNs trained on simultaneous intercep-
tionand avoidance tasks (Fig. 5a). These task-specialized subnetworks
not only mirror the modular anatomy of primate parieto-premotor
areas containing peripersonal neurons’*, but also offer asimple physi-
cal foundation for egocentric maps, which are more effective when
provided with Q values covering a broad range of tasks. Namely, if a
network separates into task-specialized subnetworks, a reweighting
process (Figs. 3 and 4) can access a broad range of tasks by simply tak-
inginputs fromalarge physical space (Supplementary Discussion 5.3).
Candidate neurophysiological mechanisms underlying such reweight-
ing are the dopamine-mediated modulation of cortical outputs to the
dorsomedial striatum*® and the role of primary motor cortex in the
integration of activity from parietal and prefrontal motor modules®
(Supplementary Discussion 5.4). Note, however, that there is no strict
one-to-one mapping between the reinforcement learning concept of
reward or prediction error and any given dopaminergic pathway***°,

Our framework also has clear implications for the interaction
between egocentric maps and their allocentric (or cognitive®’) coun-
terparts*. It posits a reciprocal relationship, where each map serves
as a contextual input for the other. For instance, threatening objects
near an animal’s body promote escape behavior, whereas knowledge
about a dead-end in its escape route biases it toward more vigorous
defense from nearby threat. We suggest that cognitive maps indicate
the currently active policy to egocentric maps. Conversely, egocentric
maps serve as one-among-many building blocks for more complex
cognitive maps, which recombine information about the world near
the body with information from other brain areas, enabling more
comprehensive action planning and evaluation. This view reconciles
anapparent contradictionin map learning: although allocentric maps
canformwithout explicit reward®~, egocentric value mapsinherently
depend on it. Allocentric maps are constructed from many compo-
nents, including nonvalued features, because hippocampal areas
are connected to large sections of the cortex. In contrast, egocentric
maps directly extend from the brain's fundamental action-oriented
functions, offering a more immediate representation of the agent’s
interaction with its environment.

Itisimportant to highlight thatimmediate reward on all contact
is not necessary for the emergence of body-part-centered receptive
fields. Instead, emergence of value fields only requires some contact
to be obligatorily rewarded. Pain, evolutionarily ancient and highly
preserved, is a potent candidate for such signaling. Fittingly, pain
serves three purposes that all rely on action: deploying immediate
movements that prevent injury, learning to avoid those actions that
result in contact with dangerous objects and enforcing inactivity to
facilitate healing®. Indeed, painis a fundamental reinforcement learn-
ing signal, resulting in strong activity in both the putamen*, where
peripersonal neurons canbe found, and the nucleus accumbens, which
is part of the mesolimbic circuitry underlying reinforcement learning*.
Fitting the notion of pain as areward signal that constructs egocentric

value maps, certain pain-selective neurons in primate areas 7b also have
visual body-part-centered receptive fields. Remarkably, their visual
responses are most prominent when the approaching objectis new or
threatening (see Fig. 7 inref. 45). In addition to the obligatory reward
offered by pain, we showed that body-part-centered fields emerge even
when contact leads to reward only indirectly (Extended DataFig.1). We
alsonotedthatan agent does not need to be acting, or even planning to
act, forbody-part-centered Qfields to exist: under reinforcement learn-
ing, the value of several potential actions is continuously calculated,
although only a minority of them is actually performed. Movement
is only necessary to learn the value of an action in the first instance.
After learning, the value can be recalled without movement. Finally,
body-part-centered fields should even be observable in response to
neutral stimuli: as long as an animal has experienced enough valued
contactinthe past, its egocentric map will treat objects as if they offer
reward on contact.

Thus, although complex, value-independent cognitive maps offer
substantial advantages and are conserved once they have evolved,
egocentric maps represent amore primal, value-driven form of spatial
representation. Rooted in the brain's essential motor functions, these
maps emerge naturally, providing afoundational framework for more
advanced cognitive processes.

Online content
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Methods

Tabular reinforcement learning for calculation of action
values Q

Actionvalues Qreportedinthisarticle were calculated either by ANNs
(described below and in Supplementary Methods 3.2), or through
tabular learning. Tabular learning has, under specific circumstances,
the potential to speed up the Q-value calculations.

Tosimplify thetabular calculation of action values, we: (1) assumed
that objects follow roughly linear trajectories, allowing objects only
to move either forward or backward relative to the agent (that is, the
yaxis in 2D, which is the anteroposterior axis when fitting empirical
datain3D) within one simulation; (2) calculated action value separately
forapproachingand receding objects; and (3) calculated action value
separately for each body part, in body-part-centered coordinates
(unless stated otherwise).

These assumptions ensured that no object’s position could be
re-visited before re-starting a simulation. This allowed us to loop
through the moving dimension as an outer loop and calculate Q only
once for each possible object position, without having to consider
the effects of object movementin the other (one or two) dimensions.
Therefore, we were able to update Qfully with alearning rate of 1 (rather
than<1), thereby substantially speeding up the calculations and making
tabular learning feasible.

We calculated the body-part-centered value fields using pseu-
docode shown in Supplementary Methods 3.1. Briefly, starting from
the space behind each body part, we looped through depth, width
and height and updated, for each action, the Q values in each voxel
as afunction of the voxels that an object could reach in one time step
(through object movement or actions available to the agent, or both).
Inthe case of environments where object dynamics have some degree
ofuncertainty along the y axis, we repeated this process 15x to account
for probabilistic world dynamics and the possibility for a state to be
re-visited multiple times. For the 2D case, only 1 voxel was used in the
z-dimension and the procedure was otherwise identical.

ANN models

Base ANN model. The agent’s environment was agrid world of 13 x 14
blocks (width (x) x depth (y)), with recurring infinite boundary condi-
tionsontheleftandright edges. Inthisworld, an ANN controlled the x
position of its ‘limb’, located at y = 3. At each time step, the ANN could
either keep the limb still or move it left or right. Simultaneously, an
object moved in the world. When the object came into contact with
the limb, the agent received a positive reward (+2).

The object spawned at a random x coordinate at the edge of the
world, opposite the agent (y = 14) and moved toward the agent’s side
at aspeed of one block per time step. In addition, in the same time
step, the object had a 50% chance to additionally move one block left,
right, up or down—a process simulating kinematic noise and percep-
tual uncertainty. The kinematic noise was therefore different at every
time step. After an object reached the agent’s side of the grid world, a
new object was spawned at the opposite end. Moving left or right had
a cost of —-0.001 (that is, negative reward), to disincentivize random
movement, whereas staying still did not entail any reward (unless the
object touched the limb).

The ANN received world information through ‘proprioceptive’
input, reflecting the limb’s x position and ‘visual’ input reflecting the
object’s xand y positions. The network consisted entirely of artificial
neurons (units) with a hyperbolic tangent (Tanh) transfer function,
except for the final layer, which was composed of pure linear units. In
Extended DataFig. 3, we also considered networks composed of other
unit types. The network output a Q value for each possible action. Q
values were learned through Q learning with experience replay. Each
simulation lasted 4,000,000 time steps, each of which was stored asa
state transition. At the end of the simulation, the network was further
trained on stored state transitions to ensure near-optimal fitting of

the value function, using 100 batches of 10,000 time steps each. The
reason for using such along training period was that the scope of this
articlewas notto create analgorithm that optimally learned particular
Q values. Therefore, the parameters used to learn Q values were not
rigorously optimized with respect to computational speed or perfor-
mance. The used parameters provided abalance between satisfactory
performance and time invested in parameter tuning.

Model variations. Most of the in silico experiments described in
the main text entail some variations to the base model environment
described above. The exact variations are detailed in the description
of each experiment,inSupplementary Methods 3.2.1-3.2.8, asare the
statistical testsapplied to eachmodel. Here we list only the parameters
that were varied:

(1) Number of limbs. In some environments, we allowed the
model to control an additional limb, placed one block below
the base limb (that is at y = 2). This limb could move left and
rightindependently of the first limb.

Object velocity. In some environments, objects with differ-

ent velocity could spawn. Each time an object was spawned,

its y velocity was set randomly between 1and 3 (blocks per
time step). Similarly, its x velocity was set randomly between

-2 and +2 (where negative and positive indicate moving left

and right, respectively). Object velocity only changed when

anew object was spawned, and was applied in addition to the
kinematic noise, which instead changed at every time step.

(3) Input time steps. In the environments where the objects could
have different velocities, the network was provided with a
‘memory’ input: proprioceptive and visual information from
the preceding time step. This allowed the network to infer
object velocity.

(4) Reward offered by objects. In some environments, the
reward consequent to contact with an object was set to
either -2 or +4 instead of the +2 of the base model. Note that
throughout the manuscript we use the term ‘reward’ in the
most general sense. Thus, the agent can receive a negative
reward, which can be understood as a punishment.

(5) Presence of a ‘tool’. In some environments, we provided the
agent with a ‘tool’, the effective part of which was located four
blocks above the limb and measured 1 x 1. The tool moved
when the limb moved. When an object came into contact with
the tool tip (that is, the effective part of the tool), the agent
experienced reward as if its limb had contacted the object.

(6) Number of objects in the environment. In some environ-
ments, two objects were simultaneously present. In such en-
vironments, we set the rewards to +2 for one object and -2 for
the other, thus making the objects either ‘goals’ or ‘threats’,
respectively. The network received separate inputs specifying
the xand y coordinates of each object.

V]

~

An egocentric value map to solve new tasks

Todemonstrate how anegocentric map can be used to solve new tasks,
we first created a map consisting of two successor features (Glossary,
Supplementary Information 1) and hence two reward configurations:
goals and threats (Fig. 4b). We used the tabular learning approach
described in the pseudocode in Supplementary Methods 3.3.

Next, we created Q values for the four new tasks. We used the
pseudocode in Supplementary Methods 3.1 to generate the Q maps
fornewtasks1,2and3 (‘Onlyreceive rewardif not moving on previous
time step’, ‘Avoid a wide threat’, and ‘Allow the goal to pass on right
side’, respectively). More specifically, for new task 1, we set the reward
tolonlyiftheagentchosethe action ‘stay still’ just before contact was
made. For new task 2, we set the reward to -1if the object was anywhere
within1block (in the x direction) from the limb. For new task 3, we set
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the reward to 1 only when the object was 2 blocks to the right of the
limb. For new task 4 (‘The object reward depends on location of first
appearance’), weinterleaved the optimal Qvalues for threat and reward
inarow-by-row fashion.

Finally, for each new task, we calculated the optimal policies for
each state and the optimal weights for the successor features, by mini-
mizing the squared error between the reconstructed Qvalues and the
task-optimal Q values.

Empirical data fitting

In this section, we describe the overall approach used to fit empirical
data from multiple experiments using an egocentric map. For the
specific details of each experiment, see Supplementary Methods 3.4.1.

Empirical data. We extracted mean values and standard errors from 23
experiments published across 10 articles, encompassing 426 (180 + 4
5+148 +20 +19 +19 +15 +8 + 8) human participants and 3 macaques.
InSupplementary Methods 3.4.1, we describe in detail which datawas
extracted fromeach article.

Model design. We created body-part-centered Qfields for moving the
hand, trunkand headinall six directions (that s, for any possible move-
ment) and fitted the combined map @ to 23 previously published
experimental results. The base model design for each individual experi-
ment is described here. When we made changes to more accurately
reflect certain experimental conditions, these are described in Sup-
plementary Methods 3.4.1.1-3.4.1.8.

World setup. To create an approximate egocentric map y2, , we simu-
lated an area of space around the upper body. Relative to the center of
the chest, this area spanned from =50 cm to +250 cm along the anter-
oposterior (y) axis, —60 to +90 cm along the rostrocaudal (z) axis and
-50to +80 cmalong the mediolateral (x) axis, witha 5 x 5 x 5cm®voxel
resolution.

Within this space, we defined surfaces of each of the three body
parts as separate sets of voxels that lead to reward on contact with
objects. The surfaces of each body part are shown in Supplementary
Fig.2a-g.

Stimulus dynamics. We assumed that objects near the body follow
roughly linear trajectories, with two possible object velocities: +20
and —20 cm s along the anteroposterior axis. We used time steps of
1s. We also gave the object some nondeterministic movement: every
time step it could move 1voxel (5 cm) away from its deterministic
location in each direction (we used a gaussian with o =5 cm as spatial
displacement probability).

Action specification. We allowed the head and the trunk to move
ataspeed of 1 voxel s™ (-5 cms™) and the hand at up to 5 voxels s™
(25 cms™), inany direction. These parameters approximate the speed
of movements naturally chosen during a long, seated experiment.
Nevertheless, our results are robust to changes inassumed movement
speeds.

Calculating Q values. We calculated tabular Qvaluesin3D as described
in Methods above, and in Supplementary Methods 3.1, separately
for+1and —-1rewards on contact.

Creating approximate 3D egocentric value maps. For each experimen-
tal condition, we created an approximate egocentricmap P(x%,_ > x*|Ho);
as the set of action values related to moving three individual body parts
(head, torso, hand) during tasks entailing reward and punishment on
contact (Fig. 4b) (thatis, wwhere " = {§f, (. ¥l Froal and Pl e
is a collection of approximate Q values fothhat body part, for

example,gr = |[gr or Qr .
p (l)hand [ handup’Qhanddown""’ handstay])

We next transformed the egocentric map into approximations of
the data d. First, we found the maximal absolute action value for each
body part and reward magnitude. Second, we averaged this absolute
actionvalueacrossallbody parts. This gave us one value Sfor the overall
egocentric map activity of each experimental condition:

N
1 7y Ttask
Sexpcond (5, @) = N bod z lmaxtaskmaxa |(pbody—part,eXD cond a)‘
ody—part=

Note that calculating the maximal Q value across actions and poli-
ciesalsooccurswhenselecting actions as we described for the recycling
ofthe egocentric map for new tasks® and it can also be conceptualized
as the competition between affordances observed in real brains®.

Furthermore, taking the absolute value is mathematically justified
because the Qvalue for the task ‘reward’ on the policy ‘punishment’is
simply the negative of the optimal Q value for the task ‘punishment’
(Fig. 4c).Similarly, the Q value for the task ‘punishment’ on the policy
‘reward’ is the negative of the optimal Q value for the task ‘reward’.
Therefore, the absolute prevents us from having to explicitly calculate
these redundant Q values.

Fitting egocentric maps to empirical data. For each experimental
condition of the empirical data d, we extracted the egocentric map
magnitude S, cong s described above. We then linearly fitted the
map magnitude to the data: we multiplied § by a separate parameter
A for each different grouping of body parts and response types and
added an offset for each experimental session:

dexp cond = Abody—part group,response Sexpcond + Bexp sess

We optimized A and B by minimizing the squared error between
thelinearly transformed egocentric map d and the empirical datad.

Statistics. To statistically assess the goodness of fit, we first calculated
the ystatistic, ameasure of total error (Supplementary Fig. 2j, top left):

v (4-d)

=) —F
o var(d;)

where d; is the mean data for a given experimental condition i, d; is
the fitted estimate of that mean and var (d;) is the estimated variance
ofthe mean d;, thatis, thes.e.m.

Next, we compared the x” statistic with a x? distribution with k
degrees of freedom, where k=N - np, Nis the total number of condi-
tionsand np the number of parameters used to fit the data. This distri-
butionrepresents the expected y* distribution if the process generating
disthesameasthat generating d.

It follows that the Pvalue obtained from comparing the y*statistic
with the x* distribution with k degrees of freedom is a measure of the
confidence that the empirical data could have been generated by a pro-
cesslike the one described in our model. Inother words, if the Pvalue is
very small, we must reject the null hypothesis that our model explains
the data. Conversely, if the P value is very large, we must accept that
hypothesis as a possibility”. For this test, the total number of observa-
tions was equal to the total number of fitted empirical conditions: 204.
Toreport confidence intervals for the y statistic, we bootstrapped the
data10°times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All used empirical data was extracted from publicly available
figures'*>2448_Generated data can berecreated using the code at
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https://github.com/rorybufacchi/EgocentricValueMaps. Source data
are provided with this paper.

Code availability
Allanalyses were performed in MATLAB (2020a and 2022b). Allcode is
available at https://github.com/rorybufacchi/EgocentricValueMaps.
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Bodypart-centred fields also form
when touch is not directly rewarded

a
Step 1: catch the apple Step 2: bring to the mouth Step 3: reward
R=+1
_— ( : e
mouth limb
b
Resulting Q-fields are hand-centred
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Extended Data Fig. 1| Bodypart-centred value fields arise eveniftouchis shows Q-values for a specific mouth position. Right-most column shows the
not directly rewarded. a) In the main text we assumed that touch resulted in average Q-values across allmouth positions. Line plots to the bottom and left of
immediate reward, for the sake of simplicity. However, bodypart-centred fields each heatmap are average Q-values along the y and x axes, respectively. In this
canalsoarise if touchitselfis not directly rewarded, but is a prerequisite toobtain ~ environment, value fields still emerge around the limb, because contact is astep
reward at alater stage. To demonstrate this, consider the situationin which an along the path to reward. The field shape and magnitude also depend on the
agent must first catch an object (here, an apple) with its limb (step 1) before position of the mouth, because intercepting the ‘apple’ when the mouth is near
bringing it to its mouth (step 2) and finally obtaining the reward by ‘eating’ it the hand leads to moreimmediate reward, and is therefore more valuable.

(step 3). b) Value fields as a function of object and mouth position. Each column
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Constant Width Networks Narrowing Networks

Expanding Networks

Extended DataFig. 2 | Individual neural response fields in all architectures
used for ANN model 1. a) Each colour map shows the activity of a single network
unit as a function of the stimulus spatial position relative to the body part
(body-partlocationisindicated as white circles). The three main rows indicate
different network architectures. Full-colour plots show units classified as

One Body Part

b Two Body Parts
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bodypart-centred; greyed-out plots show units not classified as bodypart-
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Extended Data Fig. 3| Modularity emerges only when multiple tasks are
learned successfully, regardless of artificial neuron type. a) An ANN trained
onsimultaneous interception and avoidance tasks naturally adopts amodular,
task-specialised structure. This example ANN consists of fewer neurons than the
modular ANNs reported in the main text (see Fig. 5 and Supplementary Methods
3.2.6).Individual units are classified as threat- or goal-preferring (red and blue,
respectively). b) Structural modularity in ANNs, split by the neuron types that
compose the ANNs (see Supplementary Methods 3.2.6 and Supplementary
Results 4.1.2). Rows indicate neuron type, while columns indicate regularization
method. The histograms above each line plot show the amount of sub-network
structure (indexed by a t-statistic; see Supplementary Methods 3.2.6).
Histograms to the left of each line plot show network performance (indexed by
expected reward per unit time). Light blue shaded area indicates above-chance
sub-network structure. Network types with above-chance performance also had
above-chance sub-network structure, regardless of regularization method.

©) Across neuron types and regularization methods, the amount of sub-network
structure (x-axis) predicted the performance of the network (y-axis). Colours
indicate neuron types. Dashed line indicates zero. Light blue shaded area
indicates above-chance sub-network structure. Rho and p-value result froma
Pearson's correlation test. d) The same ANN as in (a) also naturally encodes task-
specific variables in orthogonal spaces. Scatter plots show activity from the first
3 principal components. Information related to goal-proximity (black-to-blue

scatter plot) is orthogonal to information about threat-proximity (black-to-red
scatter plot). e) Orthogonality of goal and threat proximity coding in the same
networks described in (b). Coloured histograms show the angle between goal-
and threat-coding in the 1** 3 PCs. Light blue areas indicate angles within 15°

of 90°. Grey histograms indicate null distributions (1000 permutations).

f) The degree of task-encoding orthogonality in the first 3 principal components
(x-axis) predicted the performance of the network (y-axis). Dashed line indicates
the absolute dot product equivalent to a 75° angle difference. Light blue shaded
areaindicates angles within 15° of 90°. Rho and p-value result from a Pearson
correlation test. g) Across neuron types and regularization methods, the amount
of sub-network structure (x-axis) is predictive of the ability of the network to
reconstruct Q-values for novel tasks (y-axis; correlation coefficient between
original and reconstructed Q-values; see Supplementary Methods 3.2.6).

The novel tasks were the same as those described in Fig. 4a of the main text.

Rho and p-value result from a Partial correlation test, which factors out the
effects of performance (reward per unit time) and task-encoding orthogonality.
h) Across neuron types and regularization methods, the amount of task-
encoding orthogonality (x-axis) is also predictive of the ability of the network to
reconstruct Q-values for novel tasks (y-axis). Colours indicate neuron types.
Rho and p-value result from a Partial correlation test, which factors out the
effects of performance (reward per unit time) and network structure.
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Extended Data Fig. 4 | Fitting egocentric maps to empirical data, part
2:setup and behavioural measures. a) To create amodel egocentric map
around the upper body, we created a default set of voxels on the surface of the
hand, head, and trunk, which offered reward upon contact (coloured cubes).
Experiment-dependent variations of these rewarded voxels are shown in b-e.
For extended data fitting methodology, see Methods 'Empirical data fitting' and
Supplementary Methods 3.4.1. b) To model arm-centred peripersonal neurons
inmacaques (Fig. 7a), we created two sets of voxels, each simulating one of the
two arm positions during the experiment. ¢) In a subset of human experiments
(Lj,1,m,n,o0,p; Fig. 7e-h), the hand was held in front of the chest, instead of

to the side. d) To model experiments with variable stimulus valence (n,o,p),

we additionally optimised the negative reward offered by contact (Methods,
'Empirical datafitting’ & Supplementary Methods 3.4.1). The optimised reward
valuesimplied by the stimuli of differing valence are shown in q. €) To model
tool use (m; Fig.7h), we also rewarded contact with the tip of a tool. The two tool-
related experiments used a stick and arake, which we respectively modelled with

1(green) or 5 (yellow) voxels. f-p) Empirical data (right in each panel) and model
fits (leftin each panel) from experiments in which behavioural peripersonal
measures were collected. For data and fits of neural measures, see Fig. 7c-h.
Colours indicate experimental conditions. Shaded surfaces on figurines show
body parts included in the egocentric map. Error bars show SEM. For a detailed
description of each fitted experiment, see Supplementary Methods 3.4.1.f) See
Supplementary Methods 3.4.1.6 for details. g) See Supplementary Methods
3.4.1.6 for details. h) See Supplementary Methods 3.4.1.6 for details. i) See
Supplementary Methods 3.4.1.6 for details. j) See Supplementary Methods
3.4.1.6 for details. k) See Supplementary Methods 3.4.1.6 for details.I) See
Supplementary Methods 3.4.1.6 for details. m) See Supplementary Methods
3.4.1.7 for details. n) See Supplementary Methods 3.4.1.8 for details. 0) See
Supplementary Methods 3.4.1.9 for details. p) See Supplementary Methods
3.4.1.10 for details. q) Best-fitting negative reward magnitudes for the stimuli of
differing valence from experiments displayed inn,0, and p.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Comparison to alternative models. a) We fitted three
model families to an empirical dataset combined from 23 published experiments
across 10 different research groups. The ‘Egocentric maps’ family (top three
models) is the main topic of this paper, and the ‘Q-fields (Q-learning)’ model is
the specific model described in the main text. The ‘Monotonous decay’ family
(middle three models) contains purely empirical models that attempt to describe
the data, but without having a theoretical a-priori reason for being appropriate
models. The ‘Perceptual models’ (bottom two models) have previously been used
tofitindividual datasets, and are largely based on the notion that peripersonal
fields arise due to uncertainty in visual and auditory input, while estimating

the probability that the source of the visual input makes contact with the body.
We calculated all quantities for each 5 x 5 x 5cm voxel around the upper body,

and fit them to the data with at least the same number of parameters as we used
for Q-value fitting. The exponential and linear falloffs required two additional
parameters, to fit the size and slope of the receptive fields. We parametrised the
uncertainty necessary for the perceptual models by taking the same values as

reported in”*°, b) Mathematical description of each model. For the ‘Egocentric
maps’ models family, we display the update equation for the Q values, and
underline the part of the equation thatis unique to each of the three models.

¢) Summed error when each modeliis fitted to the empirical data (red line).

The error of all models other than egocentric maps is larger than the error
expected from a model that appropriately describes the generative mechanism
behind the data (blue distribution). Models with a summed error corresponding
to p<0.05 (using the variant of chi-squared goodness of fit testing described

in Methods 'Empirical data fitting') can be confidently rejected as explanations
of the data. d) Metrics of fit quality relative to the ‘Q-fields (Q-learning)’ model.
The normalised error (left y axis, red) is the summed error from (c) scaled by
the variability of the data. Purple bars show the difference between the AIC and
BIC (Akaike and Bayes Information Criterion, respectively) of each model vs the
‘Q-fields (Q-learning)’ model (right y axis, purple). A difference of >10 for AIC
and BIC (indicated by dashed black lines) is commonly taken to indicate that the
considered model can be rejected in favour of the reference model.

Nature Neuroscience


http://www.nature.com/natureneuroscience

nature portfolio

Corresponding author(s):  Rory Bufacchi

Last updated by author(s): Feb 12, 2025

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
QD
Q
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wn
(e
=
S}
QD
<L

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 0O 0oogogn
XXX X X XX X XKX

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All data collection was performed in-silico on custom-written code in Matlab 2020a and 2022b, using the default neural network toolbox.

Data analysis All data analysis was performed on custom-written code in Matlab 2020a and 2022b, using the default statistics and neural network
toolboxes. We used (sometimes modified) Q-learning and SARSA algorithms to perform reinforcement learning. All code is available at

For manuscripts utilizing cDHg%g’%th\?ﬁ%%W!gRWabrgQ%%%hal/eEggncterglt{éctY\%llrjees’(\e/laargwsbut not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

£zoz |udy

All used empirical data was extracted from figures in publicly available journals, and is additionally made available as statistical source data for figures 7 and
Extended Data Figure 5 (in excel format). Generated data can be recreated using code the at https://github.com/rorybufacchi/EgocentricValueMaps, and statistical
source data required to generate the figures is available for download alongside the manuscript.




Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The study was entirely in-silico. While no explicit sample size calculations were performed a-priori, in order to ensure that ANN results were
not due to flukes of network architecture, all statistics were performed on at least three, separately trained networks. Given the exceedingly
low p-values encountered, adding more networks would not have changed the results

Data exclusions  Given that the study was entirely computational, no data was excluded.
Replication Given that the study was entirely computational, it can be be re-run indefinitely. All code is available for anyone to do so
Randomization  Given that the study was entirely computational, no randomization was necessary, other than as a null-distribution for permutation testing

Blinding Given that the study was entirely computational, blinding was not applicable.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

MNXXXNXNXX s
OoooooQ

>
QD
Q
(e
=
)
§o;
o)
=
o
=
D)
©
o)
=
S
Q@
wn
(e
=
S}
QD
<L




Plants

Seed stocks N/A

Novel plant genotypes ~ N/A

Authentication N/A

>
Q
2
C
=
)
T
o)
=
o
=
o)
o,
o)
=
S
Q
(92)
<
3
3
Q
<2

£zoz |udy




	Egocentric value maps of the near-body environment

	Results

	Body-part-centered fields emerge from rewarded contact

	Body-part-centered fields in ANNs resemble their biological counterparts

	Artificial agents produce receptive fields anchored to a limb
	Stimulus dynamics reshape artificial body-part-centered fields
	Tool use reshapes artificial body-part-centered fields
	Reward magnitude alters artificial body-part-centered fields

	Multiple peripersonal fields can form an egocentric map

	Collections of peripersonal neurons form successor features
	Collections of varied successor features form an egocentric map
	ANNs naturally separate into task-selective subnetworks
	Egocentric value maps robustly fit existing empirical data


	Discussion

	Online content

	Fig. 1 Rewarded contact explains the origin and properties of body-part-centered receptive fields.
	Fig. 2 ANNs subserving interception and avoidance actions demonstrate canonical properties of peripersonal responses.
	Fig. 3 A collection of body-part-centered value fields can be used as a successor feature ψπ.
	Fig. 4 A collection of successor features can be used as an effective map of the world near the agent: an egocentric value map.
	Fig. 5 ANNs trained on multiple tasks show architectures conducive to egocentric maps.
	Fig. 6 Fitting an egocentric map to empirical data: setup and method.
	Fig. 7 Fitting egocentric maps to empirical data, part 1: overall fit and neural measures.
	Extended Data Fig. 1 Bodypart-centred value fields arise even if touch is not directly rewarded.
	Extended Data Fig. 2 Individual neural response fields in all architectures used for ANN model 1.
	Extended Data Fig. 3 Modularity emerges only when multiple tasks are learned successfully, regardless of artificial neuron type.
	Extended Data Fig. 4 Fitting egocentric maps to empirical data, part 2: setup and behavioural measures.
	Extended Data Fig. 5 Comparison to alternative models.




