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a b s t r a c t

A growing number of studies claim to decode mental states using multi-voxel decoders of

brain activity. It has been proposed that the fixed, fine-grained, multi-voxel patterns in

these decoders are necessary for discriminating between and identifying mental states.

Here, we present evidence that the efficacy of these decoders might be overstated. Across

various tasks, decoder patterns were spatially imprecise, as decoder performance was

unaffected by spatial smoothing; 90% redundant, as selecting a random 10% of a decoder's

constituent voxels recovered full decoder performance; and performed similarly to brain

activity maps used as decoders. We distinguish decoder performance in discriminating

between mental states from performance in identifying a given mental state, and show

that even when discrimination performance is adequate, identification can be poor.

Finally, we demonstrate that simple and intuitive similarity metrics explain 91% and 62%

of discrimination performance within- and across-subjects, respectively. These findings

indicate that currently used across-subject decoders of mental states are superfluous and

inappropriate for decision-making.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent neuroimaging studies either explicitly claim or

strongly imply that mental states can be decoded from pat-

terns of brain activity. By fitting complex statistical models to

functional magnetic resonance imaging (fMRI) brain scan re-

sults, these studies attempt to decode feelings, thoughts, de-

cisions, intentions, and behaviors (Gabrieli, Ghosh, &

Whitfield-Gabrieli, 2015; Gianaros et al., 2020; Haynes et al.,

2007; Kragel, Koban, Barrett, & Wager, 2018). If truly success-

ful, such approaches would break the code of mental states

and suggest the ability to “read the brain” of every human

being, at least for the mental states for which such models

have been constructed. Here, we systematically examine the

validity of such claims.

Decoding predicts unknown experimental variables from

brain responses. In contrast, encoding models the statistical

dependence of brain responses on experimental variables. In

either case, decoders and encoders are typically created from

task fMRI studies, in which investigators deliver a stimulus

(independent variable) and observe brain activity (dependent

variable) (Hu & Iannetti, 2016; Naselaris, Kay, Nishimoto, &

Gallant, 2011). Encoding models are consistent with this

data-generating process while decoding flips the independent

and dependent variables. This switching of variables is also

referred to as reverse inference. Conceptually, decoding and

reverse inference are one and the same: The use of brain

activityda response to a stimulusdto predict the applied

stimulus. However, it has been argued that decoding is

“principled” because the encoding map is not used as the

model; instead, a decoding model is created (Poldrack, 2011;

Varoquaux & Thirion, 2014). Yet, decoding itself is still

incompatible with the data-generating process and in-

troduces difficult statistical and epistemological problems.

Statistically, can we build a model that is both sensitive and

specific? Epistemologically, what can we learn about the brain

from decoding? This paper will unpack the former question,

providing an in-depth analysis of decoders, their properties,

and different decoding tasks. From our analyses, we draw

broader conclusions and provide general recommendations

for decoding studies.

Statistically, encoding models brain activation patterns

caused by external stimuli or internal cognitive processes.

This is accomplished through mass-univariate general linear

models of brain responses. Since a voxel's activation time

series is analyzed as a function of one or more explanatory

variables, the problem is well-poseddencoding models have

unique solutions that continuously map the stimulus to the

response (if maximumnumber of explanatory variables is less

than or equal to the number time points). On the other hand,

when predicting a stimulus (or mental process) from voxel

responses, the number of voxelsdin this case the explanatory

variablesdis usually much larger than the number of obser-

vations, which leads to an ill-posed problem with infinite so-

lutions. Thus, for most decoding problems, there are an

infinite number of possible decoders, yielding the superiority

of any decoder or set of decoders, along with the properties

that make a decoder unique, uncertain.
Decodabilitydhow discernible a mental state is, given a

brain activity patterndis predicated both on the brain activity

properties of the task being discerned as well as the goal of the

decoding. Intuitively, decodability is analogous to discerning a

breed of dog; breeds that look more similar will be harder to

distinguish. The literature claims decoders can (1) discrimi-

nate between mental states, (2) identify mental states, and (3)

capture additional state-related measures (stimulus or

perception intensities). A dog breed metaphor can more

tangibly elucidate these goals: Consider a pug (a decodee) and a

French Bulldog (a comparator)dtwo breeds thatmay look alike.

If one is familiar with a pug's unique physical featuresdsmall

stature, short snout, wrinkled face, folded ears, curled tail,

etc.dthen such features can serve as the decoder for a pug.

This decoder can then be used to perform the three decoding

tasks. Specifically, discrimination (goal 1) is akin to deciding

which dog is a pug when the pug and French Bulldog are next

to one another. Identification (goal 2), instead, is akin to saying

whether a single dog is a pug when there are no other dogs

around, and it is intuitive that one must be more confident of

the properties of pugs not tomistakenly label a French Bulldog

as a pug. Finally, capturing a continuous measure (goal 3),

such as perceived intensity of a state, is much like trying to

judge a dog's age. Although discrimination and capturing

continuous measures have been discussed and illustrated for

various mental states, less attention has been given to iden-

tifying a certain mental state from a given pattern of brain

activity.

The pattern of mental state decoders arises from weights

assigned to its constituent voxels. In this paper, we deal with a

specific class of decoders that we call fixed-weight deco-

dersdeach voxel is assigned its ownweight. Voxel weights are

derived in three stages. First, general linear models (GLM)

generate a brain activity map (correlation between the activity

in each voxel and the task). This is a basic encoding model

since the task is the independent variable and voxels are

dependent variables. Second, GLM is used to contrast the ac-

tivitymaps from a task or state of interest (a decodee; e.g., pain)

to one of no interest (a comparator; e.g., touch), and its results

are thresholded (a contrast map). The thresholded contrast

map is used to constrain the spatial extent of the decoder.

Finally, “machine learning” models are used to tune the

weights in the thresholded contrast map to optimize its pre-

dictive performance (Liang, Su, Mouraux, & Iannetti, 2019;

Wager et al., 2013); the result is a relatively sparse, fixed-

weight decoder with a fine-grained pattern (a decoder). These

models are a conceptual demarcation from the activity map

since they are a form of decoding (reverse inference) rather

than encoding. It is tacitly assumed that each stage improves

performance of the decoder by uncovering better distributed

patterns of neural ensembles related to the mental state of

interest, and as a result, detailed spatial patterns confer pre-

dictive value, as explicitly posited to be one possible expla-

nation for decoding performance, “the pattern of activation,

rather than the overall level of activation of a region, is the

critical agent of discrimination.” (Wager et al., 2013, p. p. 1395)

This concept is now expounded for diverse topics acrossmany

labs (Eisenbarth, Chang, & Wager, 2016; Gianaros et al., 2020;

Kragel et al., 2018; Lindquist et al., 2017; Marquand et al., 2010;
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Poldrack, Halchenko, & Hanson, 2009; Wager et al., 2013, 2015;

Woo, Roy, Buhle, & Wager, 2015).

The notion that across-subject decoders can capture

mental states across different individuals violates basic

neuroscientific principles, since it is premised on the immu-

tability and uniformity of human brains. Within-subject

decoding requires a one-to-one mapping between brain ac-

tivity patterns and brain states that needs to be preserved

across time. Preservation of mapping across time is vulner-

able to time effects such as learning, repetition suppression,

etc. For across-subject decoding, this mapping additionally

needs to be conserved across individuals. This ignores inter-

subject variability in structural and functional anatomy due

to differences in genetics, lifestyles, experiences, and associ-

ated memory traces (Gazzaniga, 2000; Kandel, 2013), each of

which would carve the individualized brain activity of sub-

jective brain states (for a discussion on the topic from the

viewpoint of fMRI analysis, see (Feilong, Nastase, Guntupalli,

& Haxby, 2018)). If a trivial, fixed relationship exists between

subjective brain states and brain activity, such decoders also

raise strong ethical and legal concerns regarding their ability

to invade mental privacy (Mecacci & Haselager, 2019) and

would be incongruent with commonly accepted philosophical

constructs of subjective brain states (Chalmers, 1997).

Our principal aim was to evaluate the performance and

necessity of fixed-weight decoders relative to more parsimo-

nious approaches (e.g., using encoders or brain activity maps

as decoders). After rigorously evaluating the performance of

decoders, we sought to understand fixed-weight decoders

from a more general perspective: What determines and con-

strains decodability?
2. Materials and methods

2.1. Datasets

6 datasets were used in this paper; all are part of published

studies and were either provided by their authors (Datasets 1,

2, 3, 4, and 5) or downloaded from public repositories (Dataset

6). Datasets 1, 2, 3, 4, and 5 consist of voxel-wise, whole brain,

task dependent GLM analysis activation maps (beta maps).

Dataset 6 consists of BOLD timeseries which were processed

using standard fMRI pre- and post-processing methods

described below.

2.1.1. Dataset 1
15, right-handed, adult subjects (mean age: 35.21 ± 11.48

years, 7 females). Subjects had no history of pain, psychiatric,

or neurological disorders. FMRI data were collected while

subjects received thermal stimuli across 3 temperatures: 47,

49, and 51 �C. Subjects continuously rated, using a finger span

device (Apkarian, Krauss, Fredrickson, & Szeverenyi, 2001;

Baliki et al., 2006), their pain from 0, not painful, up to 100,

worst imaginable pain (“pain rating” task.) A control scan was

performed while subjects used the finger span device to track

a moving bar projected on the screen (“visual rating” task;

moving bar replicated for each subject the specific pain rating

task temporal pattern). The dataset includes one GLM beta
map per subject per stimulus type. The dataset was previously

described in (Baliki, Geha, & Apkarian, 2009).

2.1.2. Dataset 2
51 healthy, right-handed, adult subjects (mean age: 24 ± 2.29

years, 34 females). Subjects had no history of brain injuries,

pain disorders, or psychiatric or neurological diseases. FMRI

datawas collectedwhile subjects received painful heat stimuli

on the right foot dorsum using a CO2 laser, as well as tactile

stimuli to the same area using electrical stimulation. Stimuli

were not delivered at the same time. Perceived intensities

were recorded for every stimulus and only the stimuli with

matched perceived intensity for painful heat and touch were

selected for GLM analysis. The dataset includes one activation

map per subject per stimulus modality e painful heat and

touch. The dataset was previously described in (Liang et al.,

2019; Su et al., 2019).

2.1.3. Dataset 3
14 healthy, right-handed, adult subjects (age: 20e36 years old,

6 females). FMRI data were collected while subjects received

painful heat stimuli on the right foot dorsum using a CO2

laser, tactile stimuli to the same area using electrical stimu-

lation, visual stimuli using a white disk presented above the

right foot, and auditory stimuli delivered via pneumatic

earphones. Stimuli were not delivered at the same time.

Perceived intensities were recorded for every stimulus and

only the stimuli with matched perceived intensity across the

four modalities were selected for GLM analysis. The dataset

includes one activationmap per subject per stimulusmodality

e painful heat, tactile, auditory, and visual. The dataset was

previously described and published in (Liang et al., 2019).

2.1.4. Dataset 4
33 healthy, right-handed, adult subjects (mean age: 27.9 ± 9.0

years, 22 females). Subjects had no history of pain, psychiat-

ric, or neurological disorders. FMRI data was collected while

subjects received thermal stimuli that varied in one-degree

Celsius increments across six temperatures from 44.3 �C up

to 49.3. Subjects then evaluated each stimulus as warm, and

scored it from 0, not perceived up to 99, about to become

painful, or as painfully hot, and scored it from 100, no pain, up

to 200, worst imaginable pain. The dataset includes an average

GLM activation map per subject per stimulus temperature, as

well as the corresponding average stimulus ratings.When this

dataset was applied dichotomously (pain vs no pain), we

averaged the brain activity maps from the painful and non-

painful conditions; we omitted subjects who had fewer than

two brain activity maps for each condition, resulting in 29

subjects for dichotomous ratings. The dataset was previously

described in (Wager et al., 2013; Woo et al., 2015).

2.1.5. Dataset 5
14 healthy, right-handed, adult subjects (mean age 22.4 years,

range 19e35, 10 females). Subjects had no history of neuro-

psychiatric disorders, and were not on psychoactive medica-

tions. FMRI data was collected while at each trial subjects

were presented with a word and had to decide if it refers to a

living or nonliving entity. Each word was presented either

https://doi.org/10.1016/j.cortex.2021.12.015
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mirrored or plain. The direction of presented words were

interspersed such that we end up with four trial scenarios:

Plain-Repeat (PL-RP) where during the trial and the one

immediately preceding it, thewordswere plain;Mirror-Repeat

(MR-RP) where during the trial and the one immediately pre-

ceding it, the words were mirrored; Plain-Switch (PL-SW)

where during the trial the word is plain, and the trial imme-

diately preceding it, the word is mirrored; Plain-Switch (MR-

SW) where during the trial the word is mirrored, and the trial

immediately preceding it, the word is plain. Data was

collected across twelve runs, two training weeks separated

two sets of six runs. Dataset includes, up to 12 GLM activation

maps (minimum 10) per subject per scenario. The dataset was

previously described in (Jimura, Cazalis, Stover, & Poldrack,

2014a). This dataset was provided in subject space. We per-

formed a nonlinear registration of the brains into standard

MNI space, 2�2�2 mm3, using FSL FNIRT (Andersson,

Jenkinson, & Smith, 2007).

2.1.6. Dataset 6
213 healthy, adult subjects (mean age 24.1 year (SD ¼ 7.4

year), 101 females). Subjects had no history of physical or

mental health condition. fMRI data was collected while

subjects performed a voice localizer task. Forty blocks of

vocal sounds (20) and non-vocal sounds (20) interspersed

with periods of silence were presented while the subjects

laid silent and passively listening with their eyes closed in

the scanner. This dataset was previously described in (Pernet

et al., 2015). Raw fMRI data was downloaded from openneuro.

org (https://openneuro.org/datasets/ds000158/versions/1.0.

0). We used minimal pre-processing for this study which

was performed using the FMRIB 5.0.8 software library (FSL)

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),

MATLAB2018a and in-house scripts. The following steps

were performed: motion correction, intensity normalization,

nuisance regression of 6 motion vectors, signal-averaged

overall voxels of the eroded white matter and ventricle re-

gion, and global signal of the whole brain, and band-pass

filtering (.008e.1 Hz) by applying a 4th-order Butterworth

filter. All pre-processed rs-fMRI data were registered to the

MNI152 2 mm template using a two-step procedure, in which

the mean of preprocessed fMRI data was registered with a 7-

degrees-of-freedom affine transformation to its corre-

sponding T1 brain (FLIRT); transformation parameters were

computed by nonlinearly registering individual T1 brains to

the MNI152 template (FNIRT). Combining the two trans-

formations by multiplying the matrices yielded trans-

formation parameters normalizing the pre-processed fMRI

data to the standard space. Task related activation maps

(vocal vs silence, and non-vocal vs silence) were derived from

a whole brain GLM regression analysis using the FMRIB

Software Library (FSL) (Jenkinson et al., 2012; Smith et al.,

2004; Woolrich et al., 2009).
2.2. Decoders

2.2.1. Neurologic Pain Signature (NPS)
Neurologic Pain Signature, NPS, was shared with us by Tor

Wager, whose team developed this across-subject fwMVP
(Wager et al., 2013), and has studied its decoding abilities in

multiple publications.

2.2.2. Pain-preferring voxels (pPV)
Pain-preferring voxels, pPV, is an as-fwMVP decoder devel-

oped by Iannetti and colleagues (Liang et al., 2019).

2.2.3. “Pain” neurosynth map (pNsy)
We used the term-based meta-analysis platform Neurosynth

(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) to

identify a reverse inference brain activity pattern for the term

“pain”, using association test.We term the obtained pattern as

pain-Neurosynth, or pNsy, decoder. Neurosynth uses a prob-

abilistic framework based on Generalized Correspondence

Latent Dirichlet Allocation and extracts latent topics from a

database of 14,371 published fMRI studies (neurosynth.org

(Yarkoni et al., 2011)). The term “pain” identified 516 studies

based on which a brain pattern was generated. The reverse

inference association map (FDR corrected <.01) was used as

pNsy, which identifies voxels and their probabilities for being

included in the 516 “pain” term associated studies but not in

the rest of the >11,000 studies.

2.2.4. Gaussian process decoder
We used a probabilistic Gaussian Process-based (GP) modeling

algorithm (Rasmussen, 2003; Schrouff et al., 2013a, b) to derive

an across-subject fwMVP decoder from the contrast between

thermal pain ratings and ratings of visual bars in Dataset 1.

We used the publicly available Matlab toolbox PRoNTo

(ver2.1.1) (Schrouff et al., 2013a, b). We label derived fwMVP

decoder pain-GP, or pGP.

2.3. Use of decoders

2.3.1. Normalized dot product
Throughout this study, we use the normalized dot product

(NDP) (eq. (1)) as a measure of similarity between templates

and brain activation patterns. The NDP is calculated between

the vectorized forms of a given decoder template and a

stimulus specific brain activation map. The NDP is a scalar

between�1 for colinear vectors of opposite direction, and 1 for

colinear vectors of same direction. An NDP value of zero

means the 2 vectors are orthogonal to each other e no

similarity.

NDP¼T,b ¼
Pn

i¼1Ti,biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1T

2
i ,
Pn

i¼1b
2
i

q (1)

where T and b are the vectorized forms of the decoding tem-

plate and a stimulus specific activation map, Ti and bi are the

components of T and b, and n is the number of voxels

comprising the brain.

2.3.2. Binary classification
Two types of binary classifications were performed. The first

is a between groups binary classification of brains in painful

versus non-painful conditions (or some other decode-

comparator pair). We start by calculating the NDP for each

brain under each condition;We then use the NDPs as scores to

build the Receiver Operator Curve and calculate the area

http://openneuro.org
http://openneuro.org
https://openneuro.org/datasets/ds000158/versions/1.0.0
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under the curve (AUC). The second classification is a Forced

Choice classification, this is a threshold free classification,

where the NDP of two brains are compared to each other, and

the one with the highest value is classified as “in pain”, or as

experiencing a higher level of pain than the second brain.

2.3.3. Meta-analysis
Meta-analysis was performed to obtain average performance

estimates for each of the three primary decoders. We modeled

each decoder separately since they are ‘competing’; as such,

the effect of covariance on model parameter estimates is un-

desirable. Because Dataset 3 contained three comparator tasks,

we averaged their performance and estimated the variance of

this estimate using the bootstrap technique (1000 replicates);

thus, the variance estimate of the average accounts for

covariance between the three comparator conditions. No vari-

ance stabilizing transformation was performed since the

bootstrap distribution of each AUC was approximately normal

and transformations provided little gain on average. Both NPS

and pNsy were modeled using Datasets 1e4, and pPV was

modeled using Datasets 1, 2, and 4, as pPV was derived from

Dataset 3. In other words, to use Dataset 3 in the pPV meta-

analysis would bias the results in favor of pPV, and we wan-

ted each estimate to be unbiased. We performed a random-

effects meta-analysis, fit using restricted maximum likelihood

in themetafor package using the raw AUCs (Viechtbauer, 2010).

2.3.4. Bayesian classification for identification
We created a nonparametric Bayesian classificationmodel to

probabilistically classify subjects as being in a certain state

given their brain activity map. This model was trained and

run on all subjects across all pain Datasets (Fix & Hodges,

1951; Silverman, 1986), in addition to the voice dataset

(Pernet et al., 2015).

Starting with the pain datasets, we started with a matrix

containing all subjects, tasks, and their respective normalized

dot products (NDP). Each subject was sampled one at a time.

Using the remaining subjects, a probability density functions

(pdf) of normalized dot products was created for each task. To

create these pdfs, we used kernel density estimation with a

Gaussian kernel and a bandwidth chosen using the Sheather-

Jones method (Sheather & Jones, 1991). Specifically, a pdf was

created for each of the comparator conditions (visuomotor,

touch, audition, vision, and nonpainful heat) and pain. All of

the pain conditionsweremodeled as one distribution, as a tacit

assumption of these decoders is that “physical pain” is a single

construct. From these distributions, we could calculate a pos-

terior probability, P (pain j NDP), for each individual i (eq (2)):

PðpainjNDPiÞ¼
bf painðNDPijpainÞPðpainÞPk
j¼1

bf j�NDPi

��taskj

�
P
�
taskj

� (2)

where bf painðNDPiÞ and bf jðNDPiÞ are the kernel density estimates

used forNDPi (i.e., derived from all other brains) in pain or task

j (where tasks j ¼ 1, …, k include all comparator tasks and

pain). Priors, Pð ,Þ, were derived from the number of studies in

Neurosynth that contains:
� “pain” ¼ 516

� “tactile” OR “touch” ¼ 110 þ 225

� “visually” OR “vision” ¼ 333 þ 137

� “auditory” ¼ 1253

� “visuomotor” ¼ 153

� “heat” (from old Neurosynth) ¼ 61

All study counts were obtained on December 10, 2019.

Because they were obtained from Neurosynth and each study

is given equal weight, the priors assume an equal number of

subjects across studies, and thus estimates the probability of a

brain undergoing each of these tasks in the “neuroimaging

world,” if we consider these tasks to be the neuroimaging

world. Of note, these priors provided more optimistic esti-

mates as compared to uniform priors.

For both NPS and pNsy, all subjects were used to obtain the

posterior distribution. However, to obtain an unbiased poste-

rior distribution for pPV, we did not include subjects from

Dataset 3 (i.e., from which pPV was derived).

This process was repeated for the voice test dataset (106

subjects). However, because the tasks in the voice dataset

were unique, we used a flat prior (i.e., prior probability ¼ ½ for

each of the two tasks).

2.3.5. Calculation of distributional overlap for identification
We calculated the overlap between the distributions of deco-

dee and comparator NDPs as a marker of identifiability. The

overlapping region of probability density functions contains

information that cannot be used to identify; thus, lower

overlap corresponds to higher identifiability. To calculate

overlap, we first fit each NDP distribution (e.g., NPS pain and

NPS nonpain, separately) using kernel density estimationwith

an Gaussian kernel and a bandwidth chosen using the

Sheather-Jonesmethod (Sheather& Jones, 1991). We then hadbf decodeeð ,Þ and bf comparatorð ,Þ, kernel density estimates for the

decodee and comparator, respectively. We integrated over

their minimum to calculate their overlap:

Z1
�1

min
�bf decodeeðxÞ; bf comparatorðxÞ

�
dx (3)

2.3.6. Normalized dot product e stimulus relationship
In this analysis we wanted to investigate the relationship

between the NDP and stimulus rating as well as stimulus in-

tensity. Dataset 4 includes information about stimulus in-

tensity and stimulus rating. We fit the data using locally

estimated scatterplot smoothing (LOESS) (Cleveland & Devlin,

1988).

2.3.7. Within study versus across study decoders
Given that pNsy is based on a meta-analysis of study-level

GLM brain activity maps, we created decoders from four

datasets by averaging subject-level GLM brain activity maps

obtained from a pain task. These study-level decoders were

then used to classify brains as pain versus no pain, in accor-

dance with the task.

https://doi.org/10.1016/j.cortex.2021.12.015
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for each study i

average beta maps for the pain task in study i

end

for each study i

for each study j

for each subject k in study j

for each task l in subject k

calculate cosine similarity of between TASK_lk and

DECODER_i

end

end

calculate AUC for DECODER_i applied to STUDY_j

end

end

2.3.8. Within subject versus across subject decoders
Given the variability of fMRI data, both within-subject and

across-subject, we wanted to answer the following question:

will decoding mental states of a particular subject using a

template derived from data of the same subject be more ac-

curate than decoding of mental states of a group of subjects

using a template derived from the group's data? Are within-

subject decoders superior to between-subject decoders? The

following analysis addresses this question using Dataset 6.

2.3.9. Within subject decoding
Below is a pseudo-code for the within subject analysis.

for each subject i

for each task j

randomly select half the task j beta maps replicates,

average voxel-wise to get inter subject i, task j specific

decoding template Tj,

label the remaining task j replicates as TASK_j,

calculate Signature Responses (SR) of each beta map in

TASK_j using Tj,

for each task k s j

randomly select half the task k beta maps replicates and

label as TASK_k,

calculate SRs of each beta map in TASK_k using Tj,

calculate AUC for correctly classifying TASK_j and

TASK_k beta maps,

end

end

end

Average the AUCs along all subjects,

repeat from the start 1,000 times.

This will result in average AUC estimates for the classifi-

cation of each possible task pairs (i,j) using both Ti and Tj. All

performed within-subject.

2.3.10. Between subject decoding
Below is a pseudo-code for the between subject analysis.

for each subject i

for each task j

average beta map replicates to get one beta map per subject

per task to form the between-subjects dataset,

end
end

for each task j

randomly select half the task j beta maps (from the between-

subjects dataset),

average voxel-wise to get between-subjects task j specific

decoding template Tj,

label the remaining task j replicates as TASK_j,

calculate SRs of each beta map in TASK_j using Tj,

for each task k s j

randomly select half the task k beta maps replicates and

label as TASK_k,

calculate SRs of each beta map in TASK_k using Tj,

calculate AUC for correctly classifying TASK_j and TASK_k

beta maps,

end

end

repeat from the start 1,000 times.

This will result in AUC estimates for the classification of

each possible task pairs (i,j) using both Ti and Tj. All performed

between-subject.

2.4. Decoder perturbations

2.4.1. Pattern smoothing
To evaluate the importance of the spatial pattern of fwMVPs on

the performance of task classification, NDPs were calculated

using spatially smoothed versions of a given decoder. Our hy-

pothesis is that, if a pattern holds task specific information,

then spatial smoothing will diminish the performance of the

classifier. Smoothing was done using a 3D isotropic Gaussian

kernel filter applied to each template in standard space (eq. (4)).

Tf ðx; y; zjsÞ¼ ðT*GðsÞÞðx; y; zÞ
ðM*GðsÞÞðx; y; zÞ,Mðx; y; zÞ (4)

where T and Tf are the original and filtered decoder respec-

tively, G is the Gaussian kernel,M is a binarymask that is True

where the decoder is non-zero and False everywhere else, x, y,

z are voxel coordinates, and s is the kernel standard deviation.

The additional M in the numerator resets all non-decoder

voxels to zero after filtering e preventing the decoder from

bleeding out of its boundary. The convolution in the denom-

inator is the sum of the kernel coefficients where it overlaps

with the decoder; this normalization leads to a weighted

average using only voxels within the decoder. Together, the

additional M in the numerator and the convolution in the

denominator correct for boundary effects during filtering. In

addition to the original decoder, patterns were progressively

smoothed by varying the kernel standard deviation from

1 mm up to 20 mm. Gaussian smoothing is in effect a spatial

low pass filter with a spatial frequency cutoff at -3dB given by:

fcðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2Þp
2ps

(5)

Increasing the Gaussian kernel standard deviationwill lead

to a lower cutoff frequency, effectively reducing the spatial

resolution of the data.

A binarized version of each decoder was also used to

simulate a filter with infinite standard deviation, as well as the

sign of each filtered decoder at each filter level (sgn (Tf)), where

https://doi.org/10.1016/j.cortex.2021.12.015
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voxels that are positive become 1, and voxels that are negative

become �1, and zero everywhere else. The signed version of

the templates was motivated by the fact that in contrast with

pPV and pNsy, almost half of the NPS voxels are negative

(22,725/47,490), andwe needed to investigate the role of sign of

the coefficients excluding the effect of the absolute value on

decoding. The NDPs generated from these spatial filters were

used to calculate the AUC at each smoothing level.

2.4.2. Information redundancy
We investigated the extent of information redundancy for the

three pain the decoders. We wanted to examine whether the

spatial extent of a given decoder was needed, and what

percent, on average, of the total number of voxels in each

decoder was necessary before the classifier performance be-

comes comparable to the full decoder. Our hypothesis is that if

there is no information redundancy, the performance will

reach its maximum only when we include the entire decoder;

and with increasing redundancy this maximum will be

reached with a lower percentage of voxels on average.

Based on the raw, the unfiltered sign, and the infinitely

filtered version of each as-fwMVP, we constructed a series of

new decoders that included an increasing number of voxels

randomly selected from the parent fwMVP without replace-

ment, all remaining voxels were set to zero. We started with

ten voxels and increased to themaximumnumber of voxels in

a template. This random sampling was repeated 1,000 time,

which produces as many NDPs for each density level. The

NDPs were then used to calculate the ROC and its area, which

were then averaged to give the average AUC at each percent-

age level and also calculate associated uncertainty.

2.4.3. Voxel weights
We investigated whether or not voxels with higher co-

efficients (in absolute value) encode more state specific in-

formation compared to voxels with lower coefficients. To

address this question, we binned each fwMVP voxels by their

absolute weights, such that the top 10% of absolute voxel

weights were in the first bin, the second 10% were in the

second bin, etc., and built a decoder from each tier. We then

used those templates to calculate the NDPs and the AUCs as a

function of voxel coefficient tier. In addition to the 10% bin

width and unfiltered decoders, we also generated decoders

using bin widths of 1%, 5%, and 20%, as well as decoders from

the sign of the unfiltered, and infinitely filtered versions.

2.4.4. Role of brain areas
We investigated whether decoder voxels from certain brain

regions perform better than others. We selected pNsy as the

decoder for this analysis given the probabilistic meaning of its

voxel weights. We thresholded the decoder (voxel weights

z > 6) and generated a new decoder from each distinct cluster;

we ended upwith seven new decoders.We then evaluated the

pain decoding performance of each new decoder on datasets 1

to 4. We applied a Gaussian spatial filter (SD ¼ 10 mm) before

thresholding, otherwise we end upwith toomany fragmented

clusters. We also built 7 decoders from NPS and pPV using the

overlap between each of them and each of the 7 cluster from

pNsy.We used pNsy clusters because it is the decoderwith the

most voxels in common with NPS and pPV.
2.5. Decoders derived from Dataset 5 and Dataset 6

We created fwMVP decoders from Dataset 5 (Jimura et al.,

2014a) and Dataset 6 (Pernet et al., 2015) to assess the gener-

alizability of our results to other cognitive domains. In Dataset

5 we are interested in decoding “reading a mirrored text (mr)

after reading a mirrored text (mremr)” versus “reading a

mirrored text after reading a plain text (mr-pl)” or pl-mr or

plepl. In Dataset 6, we are interested in decoding “hearing

vocal sounds” versus “hearing non-vocal sounds”. Four ap-

proaches were used to create these decoders: Support Vector

Machine, LASSO-PCR, Gaussian Process Classification, as well

a GLM contrast of activation maps. Training and testing of the

decoders were similar across all four approaches, with some

minor differences in the treatment of each dataset in how we

select the training and testing groups. Assuming we have our

training and testing groups, the procedure is as follows:

1. Perform a second-level group analysis with cluster-based

thresholding corrected for multiple comparisons by using

the null distribution of the maximum cluster mass (FSL

randomize (Woolrich, Behrens, Beckmann, Jenkinson, &

Smith, 2004), option eC) on the training group for the

contrastGLMactivationmapsmr_rpt> (mr_sw, pl_rp, pl_sw)

for Dataset 6, and vocal_sound > non-vocal for Dataset 7.

2. Binarize the group contrast map; this will be the mask of

voxels of interest for building our decoders.

3. Use SVM, LASSO-PCR, Gaussian Process to generate the

decoder with the activation maps (GLM) of the training

group. For GLM decoders, themean difference in activation

maps within this same masked region was used.

4. Perform the normalized dot product of the decoder with

the activation maps in the testing group to calculate the

signature response and calculate the AUC of the classifi-

cation exercise.

Dataset 5 include several replicate activationmaps per task

for each of the 14 subjects, we preprocessed the data as

follows:

1. Average all task replicates for each subject.

2. Randomly split the subjects into two seven subject groups:

training and testing.

3. Create a template and test it as described above.

4. Repeat 100 times from step 2 and build the AUC

distribution.

After preprocessing, Dataset 6 included 213 subjects and

had one activation map per stimulus per subject. The large

number of subjects allows us to split it into a training group

(107 Subjects), and a validation group (106 Subjects)

without the need for permutation. Because the sample was

large, we calculated the AUC confidence interval using its

relationship with the Wilcoxon statistic and normal as-

sumptions (eq. (6))

where n is the number of individuals in the validation

sample, each of whom have one activation map for each

state.
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2.5.1. SVM and Gaussian process
We used the Matlab toolbox PRoNTo (ver2.1.1) (Schrouff et al.,

2013a, b) to derive the decoders using SVM (Cristianini &

Shawe-Taylor, 2000; Mourao-Miranda, Friston, & Brammer,

2007), and Gaussian Process (Rasmussen, 2003; Schrouff

et al., 2013a, b). Data was split into two groups; Group 1

included activation maps of the mr_rp task for Dataset 5, and

of the vocal_sound stimulus for Dataset 6; Group 2 included

the activationmaps of themr_sw, pl_rp, and pl_sw for Dataset

5, and non-vocal_sound for Dataset 6. All maps were input as

independent datapoints. We performed a binary classification

analysis and used “Binary Support Vector Machine” for SVM,

and “Binary Gaussian Process Classifier” for Gaussian process,

and constrained the analysis to voxels within the mask

created from the second-level group analysis.

2.5.2. LASSO-PCR
LASSO-PCR was used to generate decoders following the

methods described by Wager et al. (Wager, Atlas, Leotti, &

Rilling, 2011; Wager et al., 2013) and was implemented in R. An

n � p sparse matrix of subjects (n) and voxels (p) was column-

wise centered and scaled. Of note, sparse columns were left

sparse since their scaled estimates are undetermined. Principal

components analysis (PCA)was performed using singular value

decomposition on the column-scaled matrix to obtain a new

n � n predictor matrix, XPCA, and a p � n rotationmatrix, R. The

reducedpredictormatrix,XPCA, wasused in a logistic regression

with L1 regularization (LASSO) (Friedman, Hastie, & Tibshirani,

2010; Simon, Friedman, Hastie, & Tibshirani, 2011; Tibshirani,

Johnstone, Hastie, & Efron, 2004). Hyperparameter l was cho-

sen to minimize binomial deviance using leave-one-out cross-

validation across 100 l0s; default glmnet parameters were used

to determine the exact grid range. PCA was performed (and

tested) separately within each fold. An n� 1 vector of penalized

coefficients was pre-multiplied by rotationmatrix R to obtain a

p� 1vector of voxelweights.Thisvectorof voxelweights served

as the decoder.

2.5.3. GLM
GLM was used to generate contrast-based decoders. These

simply used the average difference between unsmoothed GLM

activity maps (e.g., mean (vocal) emean (non-vocal)), masked

to the same thresholded region as the other decoders.
3. Results

3.1. Overview

Our investigation began with two published pain decoders

and one pain encoder that we used as a decoder. Both quali-

tatively and quantitatively, these decoders were markedly

different from one another (Fig. 1). Despite these differences,
on average, their ability to discriminate pain from non-pain

states, using datasets from four published studies (N ¼ 113)

(Baliki et al., 2009; Liang et al., 2019; Wager et al., 2013; Woo

et al., 2015), was nearly identical (Fig. 2a). To understand

decoding performance's dependence on decoder spatial

properties, we performed several operations to perturb the

decoders and reassessed their performance after each modi-

fication using the area under the receiver operating charac-

teristic curve (AUC):

1) To assess if anatomical regions have differential decoding

information, we limited the extent of the decoders to one

region at a time. For any given study, multiple clusters

from multiple decoders performed similarly well and even

matched the performance of the full-brain decoder

(Fig. 2bec, Fig S2).

2) To test the influence of the spatial resolutions on perfor-

mance, we blurred each pattern using a spatial Gaussian

filter (Fig. 3a, Fig S1). We filtered each decoder within its

nonzero voxels using standard deviations ranging from 1

to 20 mm. In addition, we created a binary map, wherein

nonzero voxels within each decoder were set to 1 and all

other voxels 0, and a sign decoder, where positive voxels

were set to þ1, negative voxels �1, and everything else 0.

Remarkably, the performances of all three decoders were

unaffected by pattern blurring; even the extreme blurring

present in the sign templates, and, with some exceptions,

the total blurring of the weights in the binary templates did

not affect decoding performance (Fig. 3b, Fig S3).

3) To test the redundancy of information captured by the

nonzero weights within each decoder, we constructed de-

coders that included only a subset of voxels from the

original templates. We randomly sampled nonzero

weights, starting with 10 voxels and increasing to the full

decoder. Maximum performance of the decoder was real-

ized even using a random selection of just 10% of the de-

coder's voxels (Fig. 3c, Fig S4-6).

4) To assess the impact that voxel weights have on perfor-

mance, we built decoders using 10% of the original de-

coders' voxels, selected according to their absolute weight

percentile (Fig S7). The top 10 percentile, followed by

weights between the 80 and 90 percentiles, then between

70 and 80, etc. Performance degradation was present in

some but not all decoders and datasets (Fig. 3d, Fig S8e9).

We generalized our findings by examining the decoders for

cognitive domains other than pain, where functional segre-

gation is better established; namely, a reading task and a

listening task (two publicly available datasets, n ¼ 14 and

n ¼ 213 subjects, respectively) (Jimura, Cazalis, Stover, &

Poldrack, 2014b; Pernet et al., 2015). We compared decoding

performance between encoders used for decoding (GLM) and

decoders, before and after constraining the decoders to binary

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 1 e Spatial properties for three decoders, which are supposed to distinguish pain from other mental states, are distinct

from each other. (A) Location and voxel-wise weight patterns of the three pain decoders (respectively abbreviated NPS, pPV,

and pNsy). (B) Weight distributions of all three decoders are distinct. NPS weight values are distributed around zero; pPV has

no negative weights; pNsy has only a few negative weights. (C) Pairwise correlations betweenweights of the three decoders.

Lines depict total least squares regression fits. All three correlations are weak (rNPS-pPV ¼ .16; rpNsy-NPS ¼ .30; rpNsy-pPV ¼ .18).

(D) Euler diagram depicts relative size of each of, and spatial overlap between, the three decoders.
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or signed maps. Our results closely resembled those for

decoding pain (Fig. 5).

The brain imaging literature commonly accepts that if a

decoder can adequately discriminate between a decodee and a

comparator, then it may also be useful for identifying the

mental state associated with the decodee. We tested this

concept for both pain and listening tasks. Despite discrimi-

nation being possible and robust to perturbations, all decoders

performed poorly and relatively similarly when trying to

identify the decodee mental state (Fig 6).

The results of our perturbation analyses led us to explore

the limits of decoding. If perturbed and simplified decoders

can perform similarly to the original decoders, can we further

simplify decoders and explain decodability? To address the

former question, we built pain decoders using noxious stimuli

encoders (brain activity maps). These encoding models per-

formed similarly to decoders. Unsurprisingly, within-study

performance was slightly superior to across-study perfor-

mance (Fig. 7aeb). We extended these findings to quantify
within- and across-subject decoding using four different tasks

(mr-mr, mr-pl, pl-pl, pl-mr), repeated up to 12 times per sub-

ject in 14 subjects (Jimura et al., 2014b). This study design

provides the opportunity to calculate discriminability as a

function of similarity measures from the decoder, decodee,

and comparator, for both within- and across-subject decod-

ing. Although performance was not consistently better for

within-subject discrimination, variation in performance could

be largely explained by within-task homogeneity and

between-task heterogeneity, allowing us to propose decoding

rules (Fig. 7ced), which worked better for explaining within-

compared to between-subject discriminability. These results

present convergent evidence that 1) specifically for across-

subject discrimination, decoding is limited by the informa-

tion contained within encoding models (brain activity maps).

In particular, sparse, binarized brain activity maps contain

sufficient information to discriminate between mental states;

2) identifying a mental state (i.e., no direct comparison) is

harder than discriminating between mental states (i.e., a

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 2 e Decoder discrimination performance and regional specificity. (A) Meta-analysis of across-subject discrimination

performance (AUC, chance ¼ .5) for decoding pain from non-pain mental states for each of the three decoders. We only

included datasets that were independent of decoder derivation; since pPV was trained on Dataset 3, we did not include

Dataset 3 in pPV's meta-analysis. On average, all decoders perform similarly, but there is appreciable variance in each of the

estimates. Square sizes indicate meta-analytic weight and lines indicate their 95% CIs. Diamonds are the meta-analytic

estimates, and each diamond's width spans the 95% CI of the meta-analytic estimate. Vertical, dotted lines pass through

each meta-analytic point estimate. (B) Regions within each decoder have variable performance. We thresholded pNsy at

z ¼ 6 to obtain seven contiguous clustersdeach of the seven clusters are depicted in red in C. We used these seven clusters

as masks for each decoder (see y-axis in B) and evaluated the decoding performance of each decoder within the respective

clusters using Dataset 2 (Liang et al., 2019). Full decoder performance is depicted by the translucent vertical lines in B.

Grey ¼ NPS; blue ¼ pPV; orange ¼ pNsy. NPS, pPV, and pNsy are published models and were trained on datasets not

included in this analysis; all tests are out of sample and cross validation is not applicable.
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direct comparison); 3) similarity measures almost fully ac-

count for the variance of within-subject discrimination per-

formance, which degrades in across-subject discrimination.

3.2. Exploring established decoders

We started by assessing the similarities and differences of

three pain decoders. Two of them are optimizedmultivariable

decoders: The Neurologic Pan Signature (Wager et al., 2013)

(NPS), constructed using LASSO-PCR, and the Pain-Preferring

Voxels (Liang et al., 2019) (pPV), constructed using SVM. The

third decoder is an encoder: the meta-analytic association

map fromNeurosynth (Yarkoni et al., 2011) for the term “Pain”

(pNsy). pNsy is a mass-univariate map based on reported

statistically significant coordinates from 516 pain-related

studies contrasted with the remaining 13,855 studies in the

Neurosynth database. Spatially, the three decoders include

voxels from approximately the same brain regions (Fig. 1A),

with some but not full overlap (Fig. 1D). They have substan-

tially different numbers of voxels and distinct voxel weight

distributions (Fig. 1B): pPV and pNsy have 2,665 and 21,318

voxels, respectively, all with positive weights, except for a few

negatives in pNsy, whereas NPS has 47,590 voxels with

weights distributed around zero. In addition, the correlations
between the weights of voxels common in any two decoders

are weak (r ¼ .17e.30; Fig. 1C).

3.3. Discrimination performance for pain is similar
between diverse decoders

We used the three decoders to discriminate between painful

and non-painful control stimuli in data from four published

studies, collected from three labs, totaling 113 subjects.

Discrimination was based on a similarity measur-

ednormalized dot product (NDP), also known as cosine sim-

ilaritydbetween an encoding of the stimulus (brain activity

map) and thedecoder.OthershaveusedNDP for decoding; e.g.,

the application ofNPS to neonatal and adult brain responses to

noxious stimuli (Geuter et al., 2020). Much like a correlation

coefficient, NDP produces þ1 for identical patterns, 0 for

orthogonal patterns, and �1 for opposite patterns; however,

NDPdoesnot demean thepatterns, in turn preservingnegative

voxel weights and “deactivations”. The assumption was that a

pain decoder should be more similar to an encoding of pain

(decodee brain activitymap) than an encoding of a control task

(comparator brain activity map). We used AUC as an indicator

of discriminability since it can be interpreted as the probability

of a randomly sampled decodee NDP being greater than a

https://doi.org/10.1016/j.cortex.2021.12.015
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randomly sampled comparator NDP, implying a direct com-

parison. We meta-analyzed the performance of each decoder

across datasets (except for pPV and Dataset 3, which was used

for its development; Fig. 2a). Decoding performance showed

dataset-dependent AUCs. However, the meta-analytic esti-

mate for each decoder was similar (AUCz .73).

This average performance similarity is remarkable and

informative about the nature of what drives decodabiltiy; it

implies that different models may nonetheless yield similar

average performance, indicating that their detailed properties

do not constrain decodability. Notwithstanding similar

average performance, the decoders performed differently

across datasets, indicating that decoding performance also

has a specificity component which can likely be explained by

brain region-specific dependencies.

3.4. No single brain region is necessary for decoding

We investigated brain region-dependence within the pain

decoders. To do so, we first divided each decoder into seven

parts based on seven different brain regions (Fig. 2c; see

Methods for details). Next, we evaluated the decoding perfor-

mance within each region for discriminating painful from

non-painful stimuli for datasets 1e4. Multiple clusters from

multiple decoders performed similarly well and matched the

performance of the full decoder (Fig. 2B and Fig S2). Moreover,

some clusters in isolation showed superior point estimates to

the entire decoder, but this was not generalizable across

studies and decoders. For instance, the voxels fromNPS in the

right insula had an AUC greater than that of the full decoder

when discriminating pain from touch in Dataset 3, but lower

when discriminating the same stimuli in Dataset 2. In some

instances, such as the inferior brainstem in NPS and pPV and

right thalamus in pPV, the clusters had no spatial overlapwith

the decoders. For these cases, the performance yielded an

AUC of .5. The inferior brainstem consistently performed

worst across studies and decoders. This is partially explained

by the exclusion of the inferior brainstem from NPS and pPV.

However, in pNsy, we suspect this effect is due to the influ-

ence of physiological noise that contaminates brainstem ac-

tivity. These results suggest that no anatomical region has

greater pain decoding power than other regions.

3.5. All three pain decoders are insensitive to spatial
perturbations

3.5.1. Spatial smoothing of voxel weights
To investigate whether discrimination performance relies on

the high resolution fixed-weight nature of the decoder's voxel

patterns, we measured performance when these patterns

were degraded by spatial smoothing of the decoder weights

using a Gaussian filter with increasingwidth, up to 20mmand

‘infinite’ smoothing (Fig. 3A, Fig S1). Gaussian filtering

removes the high-frequency content from the decoder

pattern, effectively reducing the resolution; thewider the filter

kernel is, the lower the resulting resolution. Of note, this

spatial smoothing yields decoders with cutoff frequencies

below that of the activation maps. We also built a binarized

version of each decoder wherein all voxels within a decoder

were assigned a value of 1 and all voxels outside the decoder
are zero, effectively destroying all high-resolution informa-

tion within the decoder. The binarized decoder emulates an

infinitely filtered decoder. We also built a “sign” version of

each decoder, where positive voxels become þ1, negative

voxels �1, and everything else 0. Remarkably, decoding per-

formance was minimally affected by these procedures, with

performance dropping to chance level only for the binary

version of NPS in Dataset 2 and a slight downward trend also

for NPS in Dataset 4 (Fig 3B, Fig. S3). This result clearly dem-

onstrates that the fine-grained pattern of weights in these

decoders added no value to performance (with a few excep-

tions, Fig S3).

3.5.2. Number of voxels
To characterize the minimum number of voxels necessary to

discriminate the pain from non-pain states, we created sets of

new decoders by randomly selecting subsets of voxels from

each decoder. Our analysis spanned from 10 voxels up to the

full decoder. Surprisingly, we attained the original decoding

performance when only using a random 10% of the total

number of each decoder's constituent voxels (Fig. 3C). We

replicated this finding on all datasets and for all three de-

coders, using their original form (Fig S4), when using their

binarized versions (Fig. S5), and when using their sign ver-

sions (Fig S6).

3.5.3. Significance of voxel weights
We further explored the relationship between voxel weights

and performance. Particularly, we wanted to investigate if

voxels with higher weights (e.g., the top 10%) aremore specific

to pain and will yield greater AUCs than those voxels with

lower weights (e.g., the bottom 10%). For each decoder, we

binned voxels by their absolute weights and then constructed

a set of decoders using the voxels in each bin (see Fig S7). We

generated decoders using 1%, 5%, 10%, and 20% bins. For

example, the 10% binned decoders are a series of decoders

where the first decoder includes the top 10% of the voxels

according to the absolute value of their weight, the second

decoder is made up of the second 10%, etc., and the last of the

series is a decoder that is made up of the bottom 10% of the

voxels. Two versions of each series were generated: one

version where we left the voxel weights intact and a second

where we binarized the decoders after binning. Again, we

observed only minimal degradations in performance with

decreasing voxel weights for all decoderedataset combina-

tions (Fig. 3D). Degradations were primarily seen for pNsy in

Dataset 2 (painful heat vs touch), and NPS in Dataset 3 (pain vs

auditory and pain vs visual) (Figs. S8eS9).

3.5.4. Pattern value in stimulus/perception intensity decoding
Fixed-weight, multi-voxel pattern decoders derived with

machine learning have been used to model stimulus and

perceptual intensities. For example, in addition to binary

classification of heat stimuli of different intensities, Wager

et al. (2013) (see also (Tu, Tan, Bai, Hung, & Zhang, 2016))

used NPS to capture stimulus intensity and perceptual rat-

ings from brain activity. To this end, we tested the ability of

the three pain decoders to capture stimulus and perception

properties. We used data from a study where nonpainful

and painful stimuli of different intensities, perceptual

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 3 e Discrimination performance is similar for all three pain decoders and is a function of voxel locations, not weighted

patterns. (A) Example of spatial smoothing and its effects on decoder weight distributions. Here, we applied spatial

smoothing to NPS with standard deviations of 0 (no smoothing), 2, 5, 10, and 20 mm. Note that smoothing was only applied

within the extent of the original decoder (non-zero voxels). The fine-grain pattern observed with no smoothing is quickly

destroyed (i.e., already visually by 5 mm smoothing), and at 20 mm of spatial smoothing, the pattern that is left hardly

resembles the original decoder. Kernel densities below each brain (grey) are the distributions of voxel weights (black

line ¼ 0). With more spatial smoothing, the distributions become more homogeneous and converge toward their mean

positive weight. (BeC) Across-subject decoding of pain from touch using Dataset 2 (Liang et al., 2019). (B) Performance does

not change when decoder pattern weights were distorted with increasing-size spatial smoothing. Sign ¼ sign of original

voxel weights, rendering decoder weights of 0, ¡1, and þ1; filtering s ¼ 0e20 mm; ∞ ¼ infinite smoothing rendering a

binary map. (C) Decoder performance depends only on a very small number of voxels, indicating information redundancy.

The number of voxels constituting each decoder was systematically increased (from 10 voxels to the full decoder) and

performance assessed for random samples of each size. 10% of each full decoder's voxel count (black ticks) discriminates

pain from touch equivalently to the full decoders. Shades are standard deviations for spatial uncertainty, ignoring across-

subject uncertainty. (D) Decoders were constructed using 10% of the voxels from the full decoders, with voxels selected in

order of their absolute magnitude, where 0 is the highest magnitude voxels and 100 is the lowest (see Fig S7). The voxels

with the highest absolute weights do not necessarily discriminate better than voxels with lower magnitudes, except for

pNsy in this dataset. Bars and shades are the 95% confidence intervals [CI] of AUCs, except in C, where shades indicate

standard deviations associated with permutation variability. In D, colored bars indicate the AUC of the full decoders. NPS,

pPV, and pNsy are published models and were trained on datasets not included in this analysis; all tests are out of sample

and cross validation is not applicable.
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responses, and their associated brain activity were available

(Wager et al., 2013). All three decoders (NPS, pPV, and pNsy),

whether raw or binarized, performed similarly for capturing

perceived pain ratings (Fig. 4A and B), for reflecting the in-

tensity of the thermal stimulus (Fig. 4C and D), and for

discriminating between pairs of painful stimuli (Fig. 4E and

F). We performed this analysis using both NDP and dot

product (DP) as outcome measures. The latter was used in

the original study and provides opportunity to compare the

present results to the original study. The results of the DP

better match the original study. The discordant perfor-

mance between NDP (nonmonotonic, Fig. 4A, C, and E) and

DP (almost monotonic, Fig. 4B, D, and F) suggests that pre-

viously reported results (Wager et al., 2013) are attributable

to an increase in the magnitude of brain activity in specific
regions, but in a way that becomes less similar to the

decoder as indicated by the nonmonotonic trend of NDPs.

Yet, both NDP and DP were insensitive to the removal of

voxel weights.

Our results show, at least for the stimuli and decoders we

have analyzed, that optimized decoders (NPS, pPV) offer no

advantage over the simpler, mass-univariate encoder that is

used as a decoder (pNsy) for binary classification and

stimulus-perceptionmapping. Additionally, the voxel weights

in these decoders seem to provide little decoding advantage.

This reinforces the notion that binarized decoders perform

sufficiently and that useful information is provided only by

the decodee activity in a small subset of the locations where a

decoder has non-zero weights.

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 4 e All three pain decoders perform stimulus-perception mapping similarly, both in their original formulations and

after replacing voxel weights by binary representation (0,1 values). When binary decoders are compared to the unfiltered (or

raw) decoders, all three pain decoders perform similarly in mapping pain and heat perception ratings (AeB), mapping

painful stimuli (CeD), and discriminating between pairs of painful stimuli (EeF). Analysis was done using both normalized

dot product (NDP) and dot product since NDP produced results discordant with an original publication (Wager et al., 2013)

that relied on dot products. Dot products that do not reliably increase with increasing pain or temperature imply that the

decoders cannot reliably predict subjective ratings or stimulus intensity. Vertical lines in A and B indicate the transition

from nonpainful heat (<100) to painful heat (>100). The dot products in B, D, and F were z-scored within each decoder for

presentation purposes. NPS, pPV, and pNsy are published models and were trained on datasets not included in this

analysis; all tests are out of sample and cross validation is not applicable.
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3.6. Cognitive and auditory decoders are similarly highly
redundant

So far, we have shown that popular pain decoders, as well as a

meta-contrast map (encoder) used as a decoder, are able to

maintain their full performance after being perturbed and

degraded, indicating that much of the information contained

within them is redundant. One worries that the findings may

be specific to the modality studied, as pain and nociception

are sensory systems for which no dedicated tissue has been

uncovered in the neocortex (Chen, 2018). As a result, there is

long-standing debate as to specific or distributed encoding of

pain perception (e.g., (Segerdahl, Mezue, Okell, Farrar, &

Tracey, 2015); cf. (Iannetti & Mouraux, 2010; Petre et al.,

2020)). To broaden our findings, we examined whether the

uncovered principles apply to decoding for audition and
reading. Primary and secondary auditory cortex (Brewer &

Barton, 2016; Fruhholz & Grandjean, 2013) are in close prox-

imity to the somatosensory regions examined above for pain

and cortical columns in the region reflect specific auditory

properties, while language representation with dedicated and

functionally specific tissue is unique to humans (Broca, 1861).

We used data from reading (Jimura et al., 2014b) and auditory

(Pernet et al., 2015) studies to construct encoders using

contrast maps, as well as decoders using multivariable SVM,

LASSO-PCR, and Gaussian processes (our contrast maps

closely resemble those reported in the original studies, Fig

S10eS11; see Methods). In the case of the reading cognitive

task, our findings are entirely concordant with those for the

pain decoders: all the constructed decoders show similar

performance, which was maintained after extreme perturba-

tions (e.g., sign or binary decoder) (Fig. 5). These findings

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 5 e Different implementations of cognitive and auditory decoders perform similarly regarding discrimination

performance and are robust to perturbations. We constructed decoders using general linear modeling (GLM), least absolute

shrinkage and selection operating with principal components regression (LASSO-PCR), support vector machines (SVM), and

Gaussian processes to decode (top) cognitive (reading mirror txt after mirror text vs mirror-plain, plaineplain, and plain-

mirror) (Jimura et al., 2014b) and (bottom) auditory tasks (listening to vocal vs non-vocal sounds) (Pernet et al., 2015). Much

like the pain decoders, these decoders performed similarly and better than chance (chance ¼ .5 in both) and were relatively

insensitive to perturbations. Just 10% of each decoder was enough to capture its full performance, and even extreme

perturbations, such as 10% of the binary decoder or 10% of sign (decoder), had little effect on performance. Error bars are the

95% confidence intervals of the AUCs. For the cognitive task analysis, we estimated the distribution of AUC using 100

permutations of randomly splitting the subjects in half, used one half for training and the second for validation. In the

auditory task analysis, the large number of subjects (213) allowed us to split the sample into a training group (107 subjects)

and a testing group (106 subjects) without a need for permutations.
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generalize and provide compelling support for our main

result: decoders are highly redundant, and decoding primarily

exploits information contained within voxel locations, inde-

pendent of voxel weights. Moreover, task-specific encoders

(contrast maps) are sufficient for decoding, implying that the

meta-contrast maps (e.g., from Neurosynth) are also not

necessary.

In the auditory task, discrimination performance is better

with LASSO-PCR, SVM, and Gaussian Process than with GLM.

We suspect these differences are a consequence of specific

instantiations of overfitting or due to the larger sample size

enabling the models to capture more encoding detail. We

observed similar decoder-dependent performance variations

for the pain decoders as well (see Fig. 2A); yet, in further an-

alyses, none showed superiority over the others. In the audi-

tory task, and for both SVM and Gaussian Process decoders,

we also observed appreciable performance decrement for bi-

nary maps and for 10% binary map decoders. This too was

observed in the pain decoders. Like with the pain decoders,

here, we also observed that binary map decoders and 10% of

sign (decoders) performed similarly to the raw decoders, again

suggesting that negative weights at large scales can influence

decoder performance.

3.7. Identification remains a challenge

The ability of machine learning-derived decoders to identify

mental states is repeatedly asserted in the literature

(Eisenbarth et al., 2016; Kragel et al., 2018; Lindquist et al.,
2017; Marquand et al., 2010; Poldrack et al., 2009; Wager

et al., 2013, 2015; Woo et al., 2015). If decoders are used with

the objective of identification, then they should be able to

pinpoint the specific mental state solely from the similarity

between the decoder and decodee, and, crucially, in the

absence of a comparator. This is akin to being able to state

whether a dog is a pug without other dogs being present. In

other words, identification should be based on a single

observation and what we (or the decoder) “know(s)” about the

world. This may involve a set of brain responses to any

possible stimulusda very large set. Alternatively, discrimi-

nation only requires information about two brain states: the

decodee and the comparator. Therefore, instead of AUC,

which implies a comparison, we tested identifiability by

calculating distributional overlap between the states of in-

terest and no interest. Distributional overlap estimates the

proportion of points that have an equal probability of

belonging to the state of interest and state or states of no in-

terest; here, equiprobability implies unidentifiability. In other

words, the proportion of points that are unidentifiable. In

addition, we were interested in assessing performance at the

individual level. To do so, we calculated the probability of a

subject being in a specific mental state given that subject's
brain activity map. Distributional overlaps and state proba-

bilities assessed the ability of decoders to identify mental

states.

Identification of pain states was similarly poor across the

three pain decoders explored: overlaps between states of in-

terest and states of no interest were high (�68%) and the

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 6 e Identification of mental states shows poor predictability. Three pain decoders (NPS, pPV, and pNsy in AeC) and a

voice decoder (D) were used to test identification for mental states. x-axes are the normalized dot products between decoder

and decodee, while y-axes are the posterior probability of being in pain (AeC) or listening to voices (D). Distributions of

normalized dot products and posterior probabilities include both the decodee (light grey & colors) and comparator (dark

grey) tasks. (AeC) Normalized dot products of the pain condition span the entire distribution of comparator normalized dot

products, and as a result, pain is not adequately isolated from the comparator conditions. Quantitatively, this is evidenced

by the strong decodee-comparator overlap for (A) NPS (overlap (95%CI) ¼ 68% (59e82)), (B) pPV (79% (73e90)), and (C) pNsy

(73% (66e84)). This is reflected in the Bayesian model, which shows similar probabilities of being in pain for both pain and

pain-free conditions (each dot/line). To this end, all three decoders perform similarly, and cannot unequivocally identify

pain, as indicated by their sensitivity/specificity (threshold from Youden's J statistic, chosen in-sample) of (NPS, A) .64/.74,

(pPV, B) .6/.64, and (pNsy, C) .54/.76. (D) In contrast to pain, a contrast map decoder for identifying when a participant is

listening to human voices separates more clearly the normalized dot products of the decodee (red) from comparator (dark

grey), but still performs poorly (overlap ¼ 54% (46e66)). This separation is reflected in the Bayesian model, which shows

high probabilities when individuals are listening to human voices and lower probabilities when they are not. Using a

threshold determined by Youden's J statistic (chosen in-sample), the voice decoder has a sensitivity/specificity of .77/.64. In

(A), (B), (C) the dataset used were not used in the training of the decoders (NPS, pPV, pNsy); tests are all out of sample. In (D),

we split the dataset into a training set (107 subjects) and a testing set (106 subjects).
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probabilities of being in pain (when actually in pain) were low

(median posterior probability �.5) (Fig. 6aec). These results

paint a markedly different picture than the discrimination

results, which simply show that NDPs tend to be greater when

individuals are in pain. Evidently, good discrimination does

not imply good identification.

We built upon the pain findings by using the task-specific

contrast map to decode perception of vocal versus non-vocal

sounds (Pernet et al., 2015). Although the performance of the

voice decoder was better than that of the pain decoders

(overlap¼ 54%), it was still inadequate, as over half of the data

was unidentifiable (Fig. 6d). The slight superiority of the voice

decoder relative to the pain decoders may have several ex-

planations, including the homogeneity of the training and test

sets used for the voice data or simply that some tasks are

easier to identify than others. In any case, regardless of the

mental state tested, identification remained unreliable and

thus does not seem currently feasible with fixed-weight

decoders.

3.8. Brain activity maps are sufficient for discrimination

The similarity in performance achieved by meta-contrast

maps or task-specific contrast maps (encoders) and opti-

mized multivariable decoders prompted us to take another

step back in the decoding derivation process. Would an even

simpler constructepain activitymapsdbe sufficient to decode

the state of being in pain? In other words, if no performance is

lost by using contrast maps, would task-derived activity maps

suffice as simpler but adequate decoders? We created brain

activity map decoders by averaging half of the brain activity
maps for each study's pain task, leaving the remaining maps

for testing. Each activity map decoder was then used to

discriminate pain using the left-out brain activity maps of

subjects both within and between studies (Fig. 7A). Remark-

ably, these decoders performed comparably to the ones pre-

sented hitherto (NPS, pPV, and pNsy), with an average within-

study AUC of .79 and between-study AUC of .69 (cf. ~.73 for the

fixed-weight decoders; Fig. 7B). Combined with our earlier

findings, these results raise a salient question: If decoding can

be approached in so many different ways, what actually de-

termines decodability?

3.9. Modeling decodability

Although decoding is difficult, decoding performance itself is

likely predictable; yet, to our knowledge, remains unexplored.

To build upon our breedmetaphor, some dogs exhibit features

that largely overlap with other dogs, such as the stature, color,

and flat-faced features of pugs and French Bulldogs. Similarly,

the mental state of “being in pain” shares many features with

other states; for example, unpleasantness, behavioral rele-

vance, and saliency (Mouraux& Iannetti, 2018). Therefore, the

primary challenge of decoding is to tease apart these over-

lapping features. For this reason, it seems logical that the

similarity of activity maps within and between the decoder,

decodee, and comparator would determine decoding perfor-

mance. If the decoder is built from activity maps that are

dissimilar, the resulting averagemapwould have a low signal-

to-noise ratio; if the decodees or comparators are dissimilar,

then we can expect a greater variance in NDPs; and if the

decodees and comparators are similar to one another, then

https://doi.org/10.1016/j.cortex.2021.12.015
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Fig. 7 e Decoders constructed from activity maps (encoders) perform similarly to pattern-based decoders and are dependent

on both decodee and comparator properties. (A) Performance of four activity map decoders, based on the across-subject

averaging for pain tasks, to differentiate pain from six other mental states. (B) Among the activity map decoders, within

study performance is slightly higher but extensively overlaps with across study performance. Meta-analytic estimates of

performance for NPS, pPV, and pNsy (color lines) are within .4 standard deviations from the average performance of both

within and across study activity map decoders. (CeD) Properties of activity map decoders are examined within and across

subjects as a function of a cognitive task (mr-mr, mr-pl, pl-pl, pl-mr) (Jimura et al., 2014b). (C) Decoders (rows) are built from

four cognitive tasks, tested on remaining three (columns), in a within subject and across subject design. Within subject

performance is always more consistent (i.e., it has smaller variance) but not necessarily greater than across subject. For

example, the within subject performance is always superior to across subject when using task 2 as the decoder. The inverse

is true when task 2 is the comparator, implying strong task dependence. (D) Decoder performance scales with the ratio of

decodee similarity to decodee-comparator similarity (based on normalized dot product), for within- and across-subject

comparisons. Because discriminability depends on this ratio of similarities, they can be viewed as rules for decoding. Each

color in (D) represents a decodee-comparator pair of tasks 1e4 in (C); each point is a permuted sample that has been

shrunken towards .5; the black line is the fit of a beta regression (Cribari-Neto & Zeileis, 2010) across decodee-comparator

pairs. In (A) the testing is a combination of within sample (also within study) for the case of: Dataset 1 e Dataset 1:

Visuomotor, Dataset 2 e Dataset 2: Touch, Dataset 3 e Dataset 3: Auditory, Dataset 3 e Dataset 3: Visual, Dataset 4 e Dataset

4: Heat, and out-of-sample for all other combinations. In (C) the results are calculated using 100 permutations of randomly

splitting the subjects in half, used one half for training and the second for validation.
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they will have high overlap and be difficult to tease apart. This

logic implicates the neuroanatomical and physiological as-

sumptions previously mentioned, as heterogeneity across

individuals should decrease similarity, making the NDPsmore

variable and thus more difficult to discern. Using similarity
metrics that reflect these relationships, we attempted to

explain decodability.

Until now, we have primarily focused on decoding across-

rather than within-subjects. Intuitively, it is apparent that, for

many of the reasons elaborated above, decodingmental states

https://doi.org/10.1016/j.cortex.2021.12.015
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should be more successful within-subjects compared to

across-subjects, as has been formulated by others (Cox &

Savoy, 2003; Haxby et al., 2011). However, no systematic

analysis of this notion has been performed using fixed-weight

decoders. Therefore, we investigated this question using data

well-suited for the question: fMRI data collected from 14

subjects who completed four cognitive tasks, each with 12

replicates (Jimura et al., 2014b). These repetitions enabled the

comparison of decoder performance within- and across-

subjects. As expected, decoding performance is more precise

(smaller variance) within-subject (Fig. 7C), but interestingly,

not necessarily better (greater average AUC). We investigated

whether the ratio of decodee to decodee-comparator similar-

ity (or within:between) can be a possible naturalmetric of why

some decoders are more efficacious than others. This ratio

was calculated as the average NDP of all 15 decodee pairs

divided by the average NDP of all 36 decodee-comparator

pairs. Higher performing decoders showed greater with-

in:between ratios than lower performing decoders (Fig. 7D).

Similarly, decoder similaritydthe average NDP of all pairwise

combinations of a decoder's constituent activity maps, a

measure of reliabilitydcould also explain much of the

decoder performance, and in support of our previous conclu-

sions, this relationship is largely unaffected by binarizing the

decoder (Fig S12). Further exploration showed that decod-

ability, especially within-subject, is strongly predicated on

these similarity metrics (Fig S13eS14; Table S1). Decodee

similarity, together with decodee-comparator similarity, is

strongly predictive of discriminability, accounting for 91% the

variance in AUCs. Our similarity metrics almost entirely

explain within-subject decodability, but only about 62% of

AUC variance in across-subject decoding. This result may

speak to the assumptions violated by across-subject decoders,

in that a similarity score across-subjects is less interpretable

than one calculated within a single subject since variance

(e.g., brain anatomy) may be converted to bias (making all

brains fit the same template) during image preprocessing and

registration.
4. Discussion

In this study, we asked what the determinants and limits of

decoding mental states are. For pain, reading, and language

tasks, only the locations of a small subset of GLM-derived

voxels from an encoder were sufficient for achieving a

discrimination of AUC z75%, and a long list of machine

learning tools could not consistently improve upon this per-

formance. We also showed that, in contrast to discriminating

between states, identification of a given perceptual state is

much harder. For the first time, we advanced the concept of

quantifying discriminability using a simple similarity metric,

the NDP, with which we provide models for within- and

across-subject discrimination. The latter analyses indicated

that discriminability depends not only on the decoder, but

also on similarity between the decodee and comparator.

Finally, we showed that, even in an example where within-

subject discrimination was almost fully modeled with simi-

larity properties, there was a considerable decrease in the

variance of across-subject discrimination that could be
explained. In doing so, we establish limits of decodability

based on fixed-weight models currently used in fMRI

literature.

Our similarity metrics explained a large proportion of the

variance in AUCs both within- (95%) and across- (68%) sub-

jects. The within:between similarity metric in particulard-

which is calculated as the average decodee similarity divided

by the average decodee-comparator similaritydis conceptu-

ally similar to reliability. If the decodee is not reliable, it will

have a low average decodee similarity; if the decodee and

comparator share a lot of variance, the decodee-comparator

similarity will be high. To successfully decode, the decodees

must be similar relative to the comparator. Reliability assesses

a similar construct: variance must be low within a subject (or

task) relative to between subjects (or tasks). Thus, the reli-

ability of fMRI itself must be considered when trying to un-

derstand decoders. fMRI's reliability has been scrutinized for

some time (Vul, Harris, Winkielman, & Pashler, 2009), and

recently, Elliott et al. (2020) carried out a meta-analysis

demonstrating fMRI's poor reliability (e.g., task-fMRI intra-

class correlation coefficient [ICC] < .4). However, as astutely

noted by Kragel, Han, Kraynak, Gianaros, and Wager (2021),

how the ICC is calculated matters. For multivoxel-based

decoding (e.g., with multivariable models), multivariate ICCs

are of greater interest and exceed .75. From a data quality

viewpoint, our similarity metrics imply that designing exper-

iments that maximize task reliability should enhance deco-

dabilitydit is prudent that such measurement properties be

considered before collecting data.

Limitations of across-subject decoding and reverse infer-

ence have been acknowledged by others. For example, recent

evidence shows that brain-behavioral phenotype associations

seem to become reproducible only with sample sizes of N �
2,000 (Marek et al., 2020). Yet, the extent of these limitations

and specifically the spatially widespread redundancy of fixed-

weight decoders has not been previously quantified, nor has

decodability been modeled. Multiple approaches have been

adopted to overcome such limitations. The simplest is to

avoid these complications by constraining fMRI studies to

within-subject investigations, thus bypassing the idiosyn-

crasies of anatomically aligned group-averaged results. The

approach obviates across-subject decoding, yet it is used by

various groups, including subject-specific localizers in vision

(Nasr, Polimeni, & Tootell, 2016) and language studies

(Fedorenko & Blank, 2020). An alternative solution is to build

task-based brain atlases using a large number of tasks, pref-

erably in large numbers of subjects (e.g., (Nakai & Nishimoto,

2020; Pinho et al., 2020)), whichmay be used as priors in future

specific studies.

On the other hand, multiple approaches have been

implemented for decoding mental states from fMRI data (see

Supplemental Discussion). Overall, it seems our findings

generalize: decoding success is not predicated on voxel-wise

specificity. Instead, the information necessary for decoding

appears to be spatially coarse and distributed, renderingmany

voxels contained within the decoders to be redundant. This is

not to say that specific voxels are not sufficient for decoding;

rather, widespread information sharing across the brain

simply enables statistical prediction to occur on a coarse

spatial scale. The importance of a fine-grained pattern in a
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decoder must therefore be explicitly demonstrated (see

Recommendations).

Our demonstration that decoders fit using machine

learning algorithms do not yield better decoding performance

compared to linear encoders is novel but perhaps unsurpris-

ing. The decoders themselves were constrained to “statisti-

cally significant” encoding voxels; univariately, these voxels

were redundant. Although decoders should take advantage of

multidimensional information that may not be present in the

encoders, tuning voxel weights using multivariable decoding

models only slightly improved performance for the voice data

(Fig. 5, bottom) and had no appreciable effect at all for all other

datasets. This overlaps with but differs slightly fromwhat has

been observed in both neuroscience (Schulz et al., 2020) and

other domains, such as medicine (Christodoulou et al., 2019;

Desai, Wang, Vaduganathan, Evers, & Schneeweiss, 2020):

simple statistical models, such as logistic regression, on

average perform similarly to models fit using machine

learning algorithms and we have yet to maximize the per-

formance of parsimonious models. The reasons for this are

manifold, and from a modeling viewpoint, it has been argued

that the added value of linear “machine learning” techniques

is often small, exaggerated, and does not translate into prac-

tical advantages (Hand, 2006), in part due to small training

samples (Schulz et al., 2020). Our data take this idea a step

further by demonstrating that encodersdwhich are essen-

tially t-test parametersdcontain sufficient information for

decoding. It may be the case that full-brain decoders that are

not constrained by contrast maps perform superiorly, but

preliminary evidence suggests performance gains may be

marginal (Zhou et al., 2020). Further, the large number of

predictors relative to the small sample sizes yield statistically

indeterminate models, meaning infinite models exist for a

given stimulus. Although unsurprising given the aforemen-

tioned work in this area, the apparent stark discrepancy be-

tween our findings and those in the literature warrants

explicit explanation.

How do we explain the discrepancy between our results

and the literature, even when the same decoder is used on the

same data (Wager et al., 2013)? We cannot escape the

conclusion that decoders are superfluous models. Indeed,

Wager and colleagues have also observed similar performance

across several pain decoders, including NPS, pNsy, and a

candidate NPSmodel that used SVM(Geuter et al., 2020; Wager

et al., 2013). Yet, across-subject decodability remains complex;

only brain location seems to add value, and decodability de-

pends on within and between similarity of decoder, decodee,

and comparator. These findings advance the general princi-

ples of decoding mental states.
5. Recommendations

Importantly, the results of our study provide valuable insight

for the field of decoding and several practical takeaways that

can improve the future efforts in creating fixed-pattern de-

coders. Specifically, we suggest that authors include and

consider the following:
1. Perturbations of the decoders to demonstrate that their

properties do, in fact, contribute to decoding performance.

The perturbations that should be applied may depend on

what authorswould like to claim regarding their decoder. If

it is claimed that the fine-grained pattern is important,

spatial smoothing could specifically test the spatial fre-

quency or scale at which decoding can be completed.

Alternatively, if the decoder is said to be sparse and that its

constituent elements are necessary for decoding, then

random sampling of the weights would specifically test the

necessity of its weights.

2. Comparisons of the decoders to a negative control rather than

just “chance”. To claim that the algorithmic process used to

tune the weights of a given decoder improves performance,

oneshouldtest theperformanceofthedecoderateachstageof

its creation. Forexample,pPVstartedwithbrainactivitymaps,

then used contrasts and conjunction analysis, and then

applied SVM; however, brain activitymaps alone have similar

decoding performance as the final pPVmodel (Fig. 6). The gain

of more sophisticated modeling approaches over more parsi-

monious ones should be evidenced rather than assumed.

3. Discriminationandidentificationperformanceshouldnotbe

conflated. Many decoding and prediction studies rely on

AUCda measure of discrimination. However, in practical

situations, identification is arguably of greater interest. Here,

we used distributional overlap as an agnostic approach to

quantifying identification, but this is inadequate forpractical

purposes. Rather, investigators should rely on decision the-

ory to pick cutoffs that have appropriate error ratesdor ex-

pected costs and benefitsdfor their application or utility

function. Ideally, such cutoffs should not change from task-

to-task or sample-to-sample, as decoding performance in

newsamplesandenvironments isof theutmost importance.

If probabilistically identifying, authors should demonstrate

that their model is properly calibrated.

4. Use realistic or ecologically valid tests to demonstrate

decoding performance. Themetrics used to assess decoding

performance should reflect the problem one is trying to

solve with the decoder. For example, mixing within- and

across-subject performance can mislead readers if the ulti-

mate goal is one of the two. Furthermore, if one wishes to

apply decoders to real-world or clinical settings in which no

known stimuli is being applied, many stimulus-derived de-

coders may not generalize well. That is, although a decoder

may perform well with stimuli, it will not necessarily

generalize to clinical settings if that is the ultimate goal. Re-

searchers should test the decoder in the setting or on the

level about which they would like to make inferences.

5. Share their data and decoder. Open science practices

enable others to scrutinize, apply, and build upon the

original work. Indeed, the analyses we presented in this

paper would not have been possible without authors'
willingness to make their work available.

6. Establish boundary conditions. It is not only important to

know when decoders perform well, but also when they

perform poorly. Thismay involve introducingmore control

stimuli, more difficult decoding tasks (e.g., identification

instead of discrimination), or applying to more general
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samples or populations (e.g., chronic instead of acute pain,

see for example (Lee et al., 2021)).

By implementing the above recommendations, we believe

researchers and readers can better understand the properties

and limitations of decoders, in turn making gaps in the litera-

ture more transparent and eluding optimistic biases. Thus,

these recommendations will enable authors to easily demon-

strate thenovelty of their decoders. Similarly, itmay be prudent

for neuroimaging researchers to develop and implement

reporting guidelines for decoding studies, much like Trans-

parent reporting of a multivariable prediction model for indi-

vidual prognosis or diagnosis (TRIPOD) in the clinical prediction

literature (Collins, Reitsma, Altman, & Moons, 2015).
6. Conclusion

Mental state decoding is a large, impactful subfield of cogni-

tive neuroscience. Many approaches to decoding have been

proposed and implemented. Here, we systematically assessed

just one such implementation of multivariable decoders,

which uses fixed voxel weights. Our findings reveal mis-

conceptions that are widespread in the brain imaging com-

munity and amplified by some oversold decoding studies. On

the other hand, our findings also agree with much of the

literature regarding the spatial resolution of decoding. In turn,

this work extends our understanding of mental state de-

coders, provides insight into decodability constraints, and

forms the basis for several practical takeaways that re-

searchers can readily implement in their own work. Impor-

tantly, the limited and inadequate performance of fixed-

weight across-subject decoders, especially regarding identifi-

cation, pose strict bounds on their utility in the domains of

medical and legal decision-making.
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