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Many fMRI papers in the mind-reading
literature present decoders as a final
product, arguing that decoders provide
neurophysiological insight and have
real-world utility.

However, mental state decoders are
commonly built in a way that precludes
straightforward physiological interpreta-
tions. This undermines the claim that de-
coders are interpretable or capture
Andrew D. Vigotsky 1,*, Gian Domenico Iannetti2,3, and A. Vania Apkarian1

Decoding mental and perceptual states using fMRI has become increasingly
popular over the past two decades, with numerous highly-cited studies pub-
lished in high-profile journals. Nevertheless, what have we learned from these
decoders? In this opinion, we argue that fMRI-based decoders are not neuro-
physiologically informative and are not, and likely cannot be, applicable to real-
world decision-making. The former point stems from the fact that decoding
models cannot disentangle neural mechanisms from their epiphenomena. The
latter point stems from both logical and ethical constraints. Constructing
decoders requires precious time and resources that should instead be directed
toward scientific endeavors more likely to yield meaningful scientific progress.
‘representations’ of mental states.

In contrast to decoding models,
encoding models of task fMRI are
computationally straightforward and
more interpretable.

Mind-reading research would benefit
from shifting its focus from successful
decoding per se to understanding how
decoding is affected by different experi-
mental parameters, which would dem-
onstrate the information that decoders
are sensitive to (e.g., the color of a
banana versus its orientation).
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The rise of decoding models in cognitive neuroscience
fMRI revolutionized neuroscience, facilitating the non-invasive study of brain-wide neuronal activity
via blood oxygenation level-dependent (BOLD) signals [1]. Thousands of papers investigating the
BOLD signal changes during various tasks have been published (reviewed in [2]). The predominant
paradigm entails statistically modeling the BOLD signal (the dependent variable, DV) as a function
of some aspect of the task, such as stimulus timing or intensity (the independent variable, IV) [3].
Encoding models (see Glossary) are consistent with fMRI experimental designs since re-
searchers treat brain activity as something that is measured (i.e., a DV) rather than controlled
(i.e., an IV). From encoding models, researchers infer the dependence of local BOLD signal
changes on the task. By stark contrast, decoding models are a different analytical approach
that has become popular over the past two decades. Decoding is discussed and studied broadly
in neuroscience, engineering, and information theory. Here, we narrow our discussion to the use of
decoding in human fMRI. Decoding models use BOLD signals to infer task parameters or mental
states (Box 1). These models flip the standard BOLD analytical model: the brain activity becomes
the IV (or model input), and the DV (or model output) is some aspect of the task (e.g., certain stim-
ulus properties, a perceptual state, etc.) [4]. Given that encoding relies on an fMRI signal that is em-
pirically measured, it has been termed ‘forward inference’, while decoding has been termed
‘reverse inference’ [5–8]. Decoders that reliably reconstruct some characteristic of the task or an
individual’s mental state from brain activity are typically claimed to approximate ‘mind-reading’ [9].

Mental state decoding was popularized in the human neuroimaging literature through two princi-
pal lofty claims. The first is that decoders facilitate the discovery of the neural underpinning of
mental states. Considering the mind-decoding literature, this claim may be interpreted as though
decoders (i) reflect the neural codes that give rise to mental states, or (ii) efficiently uncover
‘information’ to provide a basis for future exploration [9,10,12]. The second claim is that decoders
are objective biomarkers of subjective experiences and, thus, have valuable real-world utility in the
clinic, courts, and beyond. Here, we critically discuss whether decoders have fulfilled, or can fulfill,
either of these two claims.
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Box 1. Decoder construction and evaluation

Traditionally, constructing a decoder from a task fMRI experiment begins with fitting an encoding model. This is done by
regressing BOLD time series of every voxel or a group of voxels onto the time series of the task. Thus, the encoding model
produces a brain activity map for each task vector; each voxel or group of voxels is represented by a parameter estimate of
its task-related brain activity. These brain activity maps, often termed ‘beta maps’ in the fMRI literature, serve as the basis
for decoding.

Once these brain activity maps are constructed, they, or specific regions of interest from them, are used as predictors in
decoding models. These models intend to answer the question: ‘Given the observed brain activity, what was the task
(or the percept)?’ This prediction model is the ‘decoder’. If these decoders are reliably predictive, then they should
generalize to brain activity maps (observations) that were not used to train the decoder. Thus, decoders are tested using
out-of-sample brain activity maps, with which their performance is quantified (e.g., using accuracy, area under the receiver
operating characteristic curve, correlations, etc.). Dichotomous declarations of decoding ‘success’ typically depend on
how out-of-sample predictions outperform a null model.

For more details on decoder construction and evaluation, we refer to previous literature [10] and software toolboxes [11].
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Glossary
Counterfactual: scenario that did not
occur and that may have led to a
different outcome. Counterfactual
reasoning can provide a framework for
thinking about causality. For example, if
a patient improves after taking a drug,
one must consider the counterfactual:
what would have happened if the patient
did not take the drug? Unless we know
the answer to this counterfactual
question, we cannot determine the
causal effect of that drug.
Decoding model: statistical model in
task-based fMRI studies in which brain
activity predicts some aspect of the task
(e.g., which visual stimulus was
presented to the participant).
Direct effect: extent to which the
dependent variable is influenced by the
independent variable after removing the
effect of mediators.
Directed acyclic graph (DAG): graph
that depicts a causal hypothesis of how
different variables influence one another,
without any closed loops.
Encoding model: statistical model in
task-based fMRI studies in which brain
activity is regressed onto a task vector,
specified by the experimenter, such as
the timing and duration of a visual
stimulus presented to the participant.
Explanatory model: reason or
statement concerning how phenomena
occur. Explanatory research aims to
understand phenomena, especially their
causes, with the aid of explanatory
models that strongly rely on theory to
derive causal hypotheses.
Predictive model: forecast of future or
unseen observations. Predictive
research constructs predictive models
that aim to accurately forecast
(e.g., classify or estimate the value of)
future observations based on
observable features. This approach
does not aim to uncover causal
mechanisms.
Table 2 fallacy: tendency to interpret all
regression parameters as total effects.
This is a fallacy since it ignores causal
hypotheses that imply that some
regression parameters are total effects,
while other regression parameters are
direct effects.
Total effect: extent to which the
dependent variable is influenced by the
independent variable. This quantity
includes the influence of potential
mediators.
Much has been written about encoding and decoding in human neuroimaging (e.g., [5,6,13–15]).
However, the bulk of these papers focus on the technicalities of the decoding approaches and/or
the obtained results, while skirting the higher-level questions of whether and how decoders tan-
gibly advance neuroscience. In this opinion, we directly address the aforementioned higher-level
questions and contend that fMRI-based decoders are not neurophysiologically informative and
are not, and likely cannot be, applicable to real-world decision-making.

Decoders have no intrinsic mechanistic value
After constructing and evaluating a decoder, it is common to interpret the decoding model itself.
For example, some groups have advocated for analyzing the structure of the decoders and per-
forming hypothesis tests on their constituent components (e.g., voxels or regions) [16], with the
assumption that reliable predictive power yields more interpretable and mechanistically meaning-
ful findings. In this case, fMRI decoders are said to uncover the ‘neural codes’ or ‘representations’
of mental states [9,12]. Despite the ambiguity of these terms [17,18], this claim appears to imply
that the structure of the decoding model (its weights and spatial arrangement) somehow
represents the neural processes that cause the inferred mental state, behavioral outcome, or
task parameter. If decoders can uncover neural processes, then such insight would indeed be
neurophysiologically interesting and allow us to infer general principles from decoding findings
that allow for predictions in new contexts (e.g., the calculations performed by a specific brain
region). Here, we show that this claim is incorrect and provide multiple lines of reasoning and
evidence delineating the epistemic boundaries of decoding.

The decoder’s dictum
Successful decoders rely on patterns of BOLD activity to distinguish between mental states.
However, what do these patterns of neural activity really mean or capture? A common interpre-
tation is the decoder’s dictum, ‘If information can be decoded from patterns of neural activity,
then this provides strong evidence about what information those patterns represent’ [19]. Despite
its appeal, it has been cogently argued that the decoder’s dictum is false and that successful
decoding does not provide reasonable grounds for inference concerning the patterns used to de-
code [19]. The decoder’s dictum is false for several reasons, but principally because we do not
know which information is being decoded. Empirically, this uncertainty partly arises from the
inability of fMRI to resolve neural activity at the level of local neuronal populations, such as the
size of cortical columns [8,19]. Theoretically, there is no reason to believe that decoding models
capture neural codes, partly because the models have no biological basis or theoretical
constraints (see section ‘Model specification precludes sensible inferences’). Here, we build on
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previous arguments against the decoder’s dictum by providing stronger empirical support and a
mathematical contextualization.

Decoders are too complex for causal inference
Statistical modeling has at least two distinct goals: explanation and prediction. Explanatory
models evaluate causal hypotheses, while predictive models forecast new or future observa-
tions [20]. Notably, explanatory models do not necessarily rely on experimental manipulations to
evaluate causal hypotheses. Rather, they strongly rely on theory to hypothesize and model a
data-generating process, which makes assumptions about counterfactuals [21,22]. However,
decoders are not developed as explanatory models since they lack strong, theory-driven hypoth-
eses about counterfactuals [e.g., what would have happened had a region of interest (ROI) acti-
vated differently?]. This is perhaps understandable, because explanatory models may be
intractable due to the sheer number of predictors (e.g., tens of thousands of voxels, tens or
hundreds of ROIs, etc.) and the complexity of the brain. In other words, there are simply too
many predictors to reason about and explicitly propose a causal structure. Instead of relying on
explanatory modeling, decoders are more closely related to predictive modeling.

Decoders predict some aspect of the task based on tens, hundreds, or thousands of predictors
derived from brain activation data. These decoders are not standardized across or even within
studies. For instance, some studies even fit and contrast several decoders before examining
the model that performs best (e.g., [23]) rather than studying a few constrained explanatory
models derived from specific hypotheses. Since decoders aim to predict without committing to
a theory-informed hypothesis, they are predictive rather than explanatory models. Predictive
modeling is strictly concerned with accurate forecasting (e.g., predicting the task from brain
activation) and not whether the model is aligned with theory or the experimental protocol. As a
result, predictive models may yield good predictions, but the model parameters may be entirely
inconsistent with theory and the true data-generating mechanism [20,24].

Unfortunately, the predictive models used to decode cannot be interpreted causally. In the epide-
miology literature, the blind causal interpretation of covariates is called the Table 2 fallacy [25],
since model results are typically presented as Table 2 in epidemiology papers. The Table 2 fallacy
was also recently discussed in the context of human neuroimaging [26]. This fallacy was originally
described using an example concerning how age, HIV, and smoking influence the risk of stroke
[25]. From a multivariable logistic regression, the effect of HIV on stroke risk has a fundamentally
different interpretation compared with the effect of smoking on stroke risk since the HIV effect
may partly mediate that of smoking. This can occur if, for example, immunodepression due to
smoking increases HIV risk. Specifically, the parameter for HIV would be considered a total
effect, representing the entire contribution of HIV to the risk of stroke. By contrast, the parameter
for smoking would be considered a direct effect, that is, the effect of smoking after removing its
indirect effect, attributable to the smoking→HIV→stroke pathway. We present below a similar
analogy in the neuroimaging field.

Mesulam’s description of sensory-fugal gradients of information flow can be viewed as a
directed acyclic graph (DAG) (Figure 1) [27]. Since DAGs depict causal hypotheses, they pro-
vide a framework to aid the interpretation of model parameters. The DAG structure constrains the
interpretation of multivariable regression coefficients in neuroimaging, such as the parameters in a
multivoxel or multi-ROI prediction model. For example, suppose that a decoder predicts motor
responses to an auditory stimulus using ‘downstream unimodal’ and ‘paralimbic’ regions
(Figure 1). Since paralimbic activation contains information from downstream unimodal areas, a
model including both regions would estimate a direct effect of downstream unimodal activation
886 Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10
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Figure 1. Auditory and visual sensory‐fugal gradients of connectivity can be viewed as a causal model of
information flow in the brain. Sensory information flows along several parallel and interacting pathways. Since the
arrows represent the putative sequence of information flow, this can be interpreted as a causal model, facilitating the
rigorous evaluation of causal assumptions and, thus, interpretations. For instance, if one were to build a decoder with the
depicted regions, one can constrain one’s analysis and inferences based on the assumed information flow. By doing so,
one may choose to exclude limbic regions and hypothalamus from one’s model, while appreciating that the premotor
parameter has a different interpretation compared with the paralimbic parameter. Constrained theory-based hypotheses
make neural assumptions more explicit to aid inferences but may be unwieldy for many problems. Adapted from [27].
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rather than a total effect. Thus, decoder parameters from different regions have distinct interpre-
tations that depend on the presumed causal structure, precluding straightforward interpretations.

Decoders that are not constrained by hypotheses are likely to produce parameters that are causally
vacuous. For example, consider an unconstrained decoder that uses ‘limbic’ activation to decode a
task. Although limbic activation may not contribute to the output (1° Motor), it may contain informa-
tion from regions that do contribute, such as paralimbic, downstream unimodal, and heteromodal
areas, leading investigators to the wrong conclusion (Figure 1). Similarly, decoders can exploit
noise to improve predictions. For instance, suppose there are two regions: region A contains a
task-relevant signal and noise, while region B contains no task-relevant signal but the same noise
as region A. A decoder could use the measured data from region B to extract the signal of interest
from region A (e.g., by subtracting the measured data from region B from that of region A). This
would not suggest that region B has any signal of interest, let alone an inhibitory effect; rather, it sim-
ply implies that adjusting for the noise present in region B can improve the predictions afforded by
region A [28,29]. These interpretive issues would compound as more predictors are included in
themodel. Rather than drawing inferences concerning the information containedwithin each predic-
tor, decoders draw inferences on the level of the entire set of predictors.

These causal inferential barriers of mental state decoders also stem from the extremely high
dimensionality of fMRI data. Unless investigators have a massive sample (subjects, repetitions,
etc.) or select a small subset of voxels or ROIs, decoders will often be derived from data with
more predictors than samples. Such data are degenerate (i.e., they can be fully captured in a
lower dimension space), precluding an identifiable causal structure since the role of each variable
cannot be distinguished [30]. Therefore, the inverse problem intrinsic to mental state decoding is
ill-posed, unless several assumptions concerning the causal neural structure are made.

Causality is at the heart of scientific research, at least when it attempts to elucidate how phenom-
ena arise. Since mental state decoding is not performed under a causal framework, either
Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10 887
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experimental or analytical, but instead tries to maximize prediction accuracy, it follows that
decoding is a tool for prediction rather than explanation.

Model specification precludes sensible inferences
Admittedly, researchers may not be interested in interpreting decoders as causal models. Indeed,
much of the decoding literature skirts this issue, opting to rely on ambiguous language, such as
‘neural codes’, ‘representations’, ‘signature’, or ‘information’ [17,31,32] instead of forgoing infer-
ence. No matter how one interprets these terms, a more important fact makes decoders mech-
anistically uninteresting: decoders are arbitrary and not unique.

Decoder arbitrariness can be clearly illustrated when considering the multiplicity of model-fitting
procedures. Consider, for example, that decoding models often incorporate dimensionality re-
duction or regularization. Each procedure yields a different loss function and, thus, model param-
eters. For instance, logistic regression with L1 regularization will produce a different model
compared with logistic regression with L2 regularization. The non-uniqueness of decoders is
not just a theoretical concern; there are many examples of such non-uniqueness in practice.
For instance, in the cognition literature, one effort to improve decoding performance yielded
only marginal improvements relative to more ‘standard’ decoders that already consistently
outperformed chance [33]. In a more extreme example, consider the mental state decoders
depicted in Figure 2, which shows three distinct ‘pain decoders’ with similar average perfor-
mance. If one of these decoders truly represented the neural code underlying pain, then it should
outperform the others. Instead, there is no clear winner. Similar examples can be found in high-
impact publications in the pain literature. In one notable case, investigators trained 5916 models
and focused on a single ‘best’model despite many tested candidate models performing similarly
[23]. It remains entirely mysterious how the chosenmodel could be deemed ‘best’ based on point
estimates of predictive performance. In another highly debated example, researchers combined
LASSOwith principal components logistic regression to derive a decoder labeled the ’Neurologic
Pain Signature’ (NPS) [34]. However, the authors themself stated that the ‘predictions and accu-
racy levels of NPSwere nearly identical with [support vector regression] in all cases’ [34], meaning
that NPS is not uniquely identified.

One may argue that decoders can be transformed within their high-dimensional space to yield
new decoders with similar ‘information’. This is an empirical hypothesis that can be tested
[35,36]. Even if seemingly distinct decoders were redundant, this would exacerbate the
decoder’s dictum: many patterns can decode neural activity. What, therefore, is the meaning of
any individual pattern? Such an interpretation would necessitate a principled rationale; for
instance, that the cost function used to derive a decoder is theoretically interesting.

The lack of theoretically informed decoders has led to nonsensical findings. For example, thewinners
of the 2006 Pittsburgh Brain Activity Interpretation Competition, a team of data scientists, fit a clas-
sifier that heavily relied on voxels in the ventricles and other regions highly affected bymotion artifacts
and physiological noise [37]. It has also been noted that fMRI-based decoding of motion in the visual
cortex produces findings discordant with what would be expected; that is, that motion can be better
decoded using voxels in V1 than in V5 [19]. Thus, decoding can produce surprising results, which
are better explained by uninteresting side effects than by neurophysiological signals of interest.

Ubiquitous information undermines the meaningfulness of decoding
Human fMRI and animal studies suggest that task-correlated neural signals are widespread
across the brain [36,38–49]. Clearly, the presence of widespread signals renders decoding an
easier task. By aggregating enough information (e.g., thousands or tens of thousands of voxels),
888 Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10
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Figure 2. Three spatially discordant ‘pain decoders’ perform similarly. (A) Each decoder (abbreviated NPS, pPV, and pNsy) has a distinct pattern of voxel weights.
(B) The weight distributions of the decoders are also distinct. NPS weights are distributed around zero; pPV weights are strictly positive; pNsy has only a few negative
weights. (C) Pairwise relationships between the weights of common voxels within each of the three decoders. Lines depict total least squares regression fits. All three
correlations are weak. (D) Euler diagram depicting the relative size of each decoder and the spatial overlap between them. (E) Meta-analysis of the discrimination
performance of each decoder [area under the receiver operating characteristic curve (AUC) chance = 0.5] for decoding noxious from innocuous stimuli. Meta-analyses
only included datasets that were independent of decoder derivation: since pPV was trained on Dataset 3, Dataset 3 was excluded from the meta-analysis of pPV. On
average, all decoders perform similarly (AUC ≈ 0.73), but each estimate has appreciable variance. Square sizes indicate the meta-analytic weight, and lines indicate
their 95% confidence intervals (CIs). Diamonds are the meta-analytic estimates, the width of which is the 95% CI of the meta-analytic estimate. Vertical broken lines
pass through each meta-analytic point estimate. Adapted from [8].
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one can discriminate between tasks, even in voxels with univariate t-statistics close to zero [36]. It
follows that the ability to decode from arbitrary groups of voxels across the entire brain makes
decoders even more challenging to interpret physiologically. That is, not only are the weights of
decoders arbitrary due to the issues discussed in the previous section, but the voxels included
in the decoders may also be nonspecific.

Have decoders yielded meaningful progress?
After 20 years of mind-reading [34,50,51], the question of whether fMRI-based decoders have
yielded any novel, meaningful neurophysiological knowledge is inescapable.We address this ques-
tion by critically assessing some thought-provoking decoding findings. For instance, using a prob-
abilistic generative model, investigators uncovered semantic information from different listening
tasks across the entirety of the human cortex, resulting in a semantic-specific parcellation of the
neocortex [52]. Do such findings, albeit intriguing, represent true progress in understanding the
brainmechanisms behind language processing? After all, if this widespread semantic ‘representation’
is causal, we should expect distinct semantic deficits with different cortical lesions. Still, clear semantic
deficits do not arise from lesions reflecting the identified decoding patterns. Similarly, one may con-
tend that seminal fMRI decoding findings, that different visual stimuli can be inferred using signals
from the fusiform face area and parahippocampal gyrus [50], have not progressed our understanding
of visual processing, for two reasons: (i) these areas were already known to respond to higher-order
properties of visual stimuli [53,54]; and (ii) in contrast to the decoder’s dictum, the specific information
contained within the patterns used to decode was not elucidated. Finally, the ever-growing literature
on decoding different pain states from fMRI signals (e.g., [8,23,34,36,55–57]) has not brought us any
closer to understanding how pain experience is generated.

Oddly, despite all the issues described above, the field of fMRI decoding is thriving and yields
some of the highest-impact papers in neuroimaging. Yet, the bold claims that these results
have resulted in substantial progress in understanding how the brain works are plain wrong. It
is reassuring to see that some authors adopt a more prudent stance. For example, one review
states, ‘In general, reward studies that use [multivoxel pattern analysis] approaches have largely
confirmed previous results from univariate fMRI studies’ [58]. Indeed, many decoding studies rely
on encoding studies to fallaciously attempt to interpret their decoders, a flawed logic process akin
to reverse inference [13].

Is decoding superior to encoding?
Encoding models are the inferential bread-and-butter of task fMRI, and they draw inferences differ-
ently compared with decoding models. Indeed, encoding and decoding models have been previ-
ously compared and contrasted [59]. Here, we add a few points to this discussion, especially
concerning previous arguments that decoding analyses are more sensitive than encoding analyses.

In encoding, the time series of each voxel is typically regressed onto that of the task vector [8]. This can
be done univariately (i.e., one voxel at a time; the DV is a random variable) or multivariately (i.e., many
voxels at a time; the DV is a random vector) [60]. Although univariate andmultivariate approaches both
produce stimulus-related brain activation (or ‘beta’) maps, multivariate analyses facilitate inferences
concerning how different voxels or regions activate together, whereas univariate analyses are blind
to the correlation structure between different voxels or ROIs [60]. By contrast, many, although not
all [61,62], fMRI decoding studies rely on spatial patterns derived from an encoding model.

It is often claimed that decoding allows one to study these spatial structures in a more sensitive
way compared with univariate encoding models. However, encoding can also facilitate the
study of ‘patterns’, arguably in a more principled way than decoding (i.e., by examining encoding
890 Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10
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vectors), and can naturally do so using multivariate methods [60]. In contrast to mainstream po-
sitions in the decoding literature [12,63], there is evidence that these multivariate encoding
models are more powerful compared with classification-based models such as decoders [64].
In addition, there are also conceptual benefits to multivariate encoding analyses. For instance,
the null hypothesis tested by multivariate encoders differs from that tested by decoders. Specif-
ically, the null hypothesis of decoders is that there is no effect in any subject, while encoders test
the null hypothesis that the average encoding vector is the same between different conditions
[65]. It follows that rejecting the encoding null hypothesis is of greater interest than rejecting the
decoding null hypothesis [65]; we are typically more interested in understanding brain activity
than in classifying individuals. Due to these benefits, we and others contend that researchers
should strongly consider replacing decoding with multivariate encoding methods, such as multi-
variate analysis of variance [65,66]. Multivariate encoders are more aligned with the question of
how conditions differ, are more interpretable, and are straightforward to implement.

Importantly, linear multivariate encoding models are not totally detached from linear decoding
models. In fact, one can calculate encoding weights from decoding weights [28]. Since linear mul-
tivariate encoding models can capture the same information as linear decoders [28,59] while
being more sensitive and interpretable, encoding models should remain the inferential bread-
and-butter of task fMRI.

Mental state decoders cannot be used for real-world decision-making
Many studies in the decoding literature emphasize their potential for real-world application in many
disciplines. For example, 11 years ago, a group of researchers claimed to have described an ap-
proach to identify pain, noting ‘If our findings are extended to clinical populations, brain-based signa-
tures could be useful in confirming pain in situations in which patients are unable to communicate
pain effectively or when self-reports are otherwise suspect’ [34]. Such unwarranted overoptimistic
views have been echoed by others [67,68], neglecting cautionary notes [13,69]. Proposed real-
world applications of decoders aremanifold. Does the patient truly feel pain? Did the defendant com-
mit the crime and, if so, did they commit it intentionally? Peering into someone’s mind would absolve
much uncertainty surrounding these issues. This is one implication of mental state decoders: By de-
claring whether a patient is in pain, a doctor can decide whether to prescribe them opioids and the
insurance company can decide whether to pay the patient’s bills. A jury can find a defendant guilty
by declaring that a defendant is lying based on their brain scan. Although the implications of such ap-
plications are massive, the real-world utility of mental state decoders is inherently limited.

Decoder derivations are often detached real-world scenarios
Mental state decoders have been claimed to complement self-reports or, when self-reports are
not available, such as in noncommunicative populations, replace self-reports [34,70,71]. In the
context of these goals, it is important to consider that prediction models perform best in settings
closest to those in which they were trained. Therefore, decoding works better when the condition
to be decoded is similar to the condition used to generate the brain activity pattern used for
decoding. However, many decoders are derived from the brain responses elicited by simple stim-
uli, such as noxious laser or heat stimuli to elicit pain [34,55], with the goal of generalizing these
decoders to other ‘mental states’, conditions, or populations.

There is a clear issue when such decoders attempt to identify complex aspects of clinical condi-
tions, such as spontaneous pain fluctuations in patients with chronic pain. These issues are more
clearly elucidated by several questions concerning the clinical importance of decoders derived
from contrived stimuli. Why should a decoder derived using evoked pain provide insight into on-
going clinical pain? We should not necessarily expect decoders trained on evoked pain to
Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10 891
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generalize to spontaneous clinical pain, since evoked and spontaneous pains are associated with
distinct brain activation patterns [72,73]. Why should a decoder built using a healthy population
work in a clinical population? We should not expect it to, especially given that pathoanatomy
and/or pathophysiology are presumed to drive the clinical condition. Why should a decoder
trained and tested in a communicative sample be valid in a noncommunicative sample? General-
izability across populations is only assumed and neither justifiable nor falsifiable. If noncommuni-
cative individuals differ neurophysiologically from those on whom a decoder was trained, such
generalizability assumptions are especially dubious.

Arguments that these decoding tasks are justifiable must explicitly address these questions and
justify the assumptions beingmade.Without justifications, these are simply assertions that should
not be relied upon for real-world decision making. A corollary of this is that efforts to develop de-
coders intended to translate to the real world should be done in good faith and developed and
tested in accordance with that goal, rather than relying on questionable assumptions.

Decoders cannot replace or supplement self-reports
Decoders intended to unveil subjective states (cf. stimulus or task properties) introduce critical ques-
tions concerning mental privacy and measurement. Decoders intending to decode subjective states
are typically trained using self-reports describing the quality or intensity of a percept. In other words,
the decoders try to predict self-reports. For example, in a recent study, investigators constructed a
decoder intended to capture ‘craving’ ratings in response to visual cues in drug users and non-
users [74]. The authors stated ‘… given the role of self-reported craving in predicting outcomes,
this brain-based patternmay function as both a diagnostic and predictive biomarkerwith potential util-
ity in predicting clinically relevant individual differences and future outcomes’ [74]. In other words, the
authors suggest that their decoder responses provide information beyond craving self-reports alone,
but can this be true? Of course not, since the decoder is just a noisy proxy of the self-report.

When building a decoder, self-reports are considered the gold standard. A crucial issue arises
when applying the decoder to a communicative individual, as in a ‘lie detector’ situation. What
if the individual’s self-report conflicts with the prediction of the decoder? Why should one believe
a measure trained using a self-report and intended to predict a self-report (proxy), over a self-
report itself (gold standard)? Clearly, as we already described elsewhere [69], decoding has no
additional value when self-reports are available.

Future directions

We need less research, better research, and research done for the right reasons.
[Douglas Altman, British Medical Journal [75]]

As papers on decoders continue to be published, it is imperative to ask whether the work behind
them represents the best use of precious time and resources. Decoders neither advance our
knowledge of brain physiology nor pave a path to sound real-world implementations, providing
another burning example of ‘research waste’ described in biomedicine [75,76]. Studies in
which decoders are the primary deliverable are arguably exercises that prioritize visibility over
genuine scientific progress. We contend that, unless decoders offer neurophysiological insights
or tangible real-world benefits, time and funding are better spent on more fruitful scientific efforts.

Still, mental state decoders can be part of a broader and more solid question-centered research
paradigm. In this paradigm, decoders are a means to obtain a different objective rather than an
892 Trends in Cognitive Sciences, October 2024, Vol. 28, No. 10
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Outstanding questions
How can the interpretability of mental
state decoders be improved?
Investigators often use plug-and-play
models to develop decoders that are
not based on physiological knowledge.
Models constrained by a priori physio-
logical hypotheses, or decoding paired
with experiments to investigate the na-
ture of the decoded information, will fa-
cilitate decoder interpretability.

Can decoding studies be improved to
yield novel mechanistic insights above
and beyond encoding? Many of the
insights obtained by decoders are also
possible with encoding. If decoding is
to be used fruitfully in fMRI, then
decoders must demonstrate unique
value over more interpretable and
parsimonious encoders.

What test could be used to
demonstrate the specificity of a
decoder? A decoder may successfully
predict a mental state, but the same
decoder can also reliably discriminate
between other mental states. For in-
stance, if a decoder built to discrimi-
nate painful from warm sensations
can also discriminate between auditory
and visual sensations, then that de-
coder cannot be called specific.
objective in themselves. Instead of identifying the presence of information, we should seek to un-
derstand the nature of the identified information. Experimenters can attempt to achieve this by
exploiting decoders to study how information content shifts as a function of the task or partici-
pants’ responses. This view yields an important distinction between two classes of decoding
studies: (i) studies in which the authors are satisfied with showing that the decoder works, and
(ii) studies in which the primary deliverable is knowledge derived from applying the decoder. Stud-
ies within the former group are still themajority; they assume the decoder represents a fundamen-
tal scientific contribution, tangibly advancing a field [12,34,67,71]. However, as we argued, this
assumption is untenable. By contrast, studies using decoders as tools to probe neural activity
are less problematic: the inferences come from experimental manipulations rather than from
the decoder itself (e.g., [58]).

Our arguments do not preclude encoding or decoding from being used as a ‘first step’ in a sci-
entific effort to understand the nature of brain activity. For instance, the ability to decode brain-
wide audition-related signals decreased with increasing levels of sedation while auditory cortex
activity remained stable [36]. By assuming that brain activity is necessary for perception and be-
cause auditory cortex activity remained stable, it was concluded that at least some of the brain-
wide information must be necessary for conscious perception. This conclusion relied on using a
decoder to understand the nature of the information across different experimental conditions,
which could not have been drawn by simply showing that the decoder worked. Although fMRI
cannot directly manipulate brain activity to establish causality, it can provide hypotheses that fu-
ture experiments can test by perturbing brain circuits.

Concluding remarks
We argued that decoders themselves are not mechanistically interesting and do not show prom-
ise for real-world decision-making. The mechanistic vapidity of decoders arises from their non-
uniqueness, non-interpretability, and incompatibility with the data-generating process. The
poor applicability of decoders stems from both being philosophically ungrounded and a model
fitting incompatible with the intended application. Some of these issues can be remedied by
shifting the research focus from decoding itself to the experimental context in which the decoder
predictions are made. There are several examples of research questions that use decoding as a
means to gain novel physiological knowledge (see Outstanding questions).
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