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How perception of pain emerges from neural activity is largely unknown.
Identifying a neural ‘pain signature’ and deriving a way to predict perceived
pain from brain activity would have enormous basic and clinical implications.
Researchers are increasingly turning to functional brain imaging, often apply-
ing machine-learning algorithms to infer that pain perception occurred. Yet,
such sophisticated analyses are fraught with interpretive difficulties. Here, we
highlight some common and troublesome problems in the literature, and
suggest methods to ensure researchers draw accurate conclusions from
their results. Since functional brain imaging is increasingly finding practical
applications with real-world consequences, it is critical to interpret brain
scans accurately, because decisions based on neural data will only be as
good as the science behind them.

Machine Learning in Pain Research: Objectives and Protocols
Pain, as any other conscious sensation, is determined by a specific pattern of neural activity at
the cortical level [1,2]. To understand the perception of pain, many researchers use non-invasive
functional neuroimaging techniques [3,4], such as electroencephalography (EEG), magnetoen-
cephalography (MEG), positron emission tomography (PET), and, especially, functional mag-
netic resonance imaging (fMRI). With these tools, researchers can now attempt to achieve the
following key objectives: (i) identify temporal and spatial patterns of neural activity that could
serve as a cortical signature for human pain perception [5–8]; and (ii) establish whether these
patterns, or any other physiological measures of brain activity, can be used to reliably predict
perceived pain [7,9–14]. Achieving these objectives, which would have dramatic basic and
clinical implications, is increasingly attempted through the application of sophisticated
machine-learning (see Glossary) algorithms to interpret functional brain-imaging data [15–
18]. However, correct interpretation requires proper protocol design and careful inferences.
Here, we highlight some of the pitfalls of applying machine-learning techniques to functional
brain-imaging data related to pain perception, especially in light of recent divergent conclusions
in the literature, and suggest possible remedies.

Machine learning is a scientific discipline exploiting algorithms that can learn and make
predictions from data [19–21]. When applied to functional brain-imaging data, machine
learning has the potential to: (i) identify response features that specifically encode a given
experimental variable (e.g., the categories of visual objects [22]); and (ii) decode measured
data to predict subjective percepts and intentions (e.g., the pain intensity reported by an
individual [9]) (Box 1). Therefore, it is not surprising that machine learning has received
immense interest in systems neuroscience, and it is now increasingly used in the field of
human pain [7,9–14,23,24].

While machine-learning techniques hold considerable promise for pain research, investigators
must take special care to match machine-learning protocol design to the desired study
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Glossary
Machine-learning prediction: once
machine learning has identified a
response pattern associated with an
experimental variable, it can be used
to predict that experimental variable
on the basis of the detected
response pattern.
Machine learning: an analysis
approach that comprises using the
ability of computers to learn from,
and make predictions from, different
kinds of data. When applied to
functional brain images, machine
learning can be used to detect
response patterns (e.g., intensity and
spatial distribution of fMRI signals)
associated with a given experimental
variable (e.g., the intensity of pain
perception).
Multivoxel pattern analysis
(MVPA): a kind of machine-learning
technique that identifies condition-
specific spatial patterns of fMRI
responses distributed across different
voxels. These patterns of activity can
be used to predict the occurrence of
different experimental variables (e.g.,
different levels of subjective pain, or
pain vs touch).
Neural signature: a feature of the
brain response that is uniquely
associated with a given experimental
variable. To identify conclusively a
neural signature, it is crucial to ensure
that its relation with the experimental
variable is exclusive (i.e., that other
experimental variables do not
produce the same pattern of brain
response).
Pain prediction: the process of
estimating unknown subjective
intensity of pain perception using
experimentally measured functional
brain-imaging data. True pain
prediction must not use prior
knowledge about subjective reports
of pain intensity when testing the
prediction performance.
Prior knowledge: in the context of
machine learning, refers to the
information about the experimental
variables that, although available,
should not be used when testing the
performance of the machine-learning
classifier in predicting an experimental
variable. The incorporation of prior
knowledge into the training is a
necessary aspect of machine
learning. By contrast, exploiting prior
knowledge when testing the
algorithm performance is incorrect,
and results in an artificial inflation of
performance (false positive results).

Box 1. Encoding, Decoding, and Reverse Inference

In functional brain imaging, ‘encoding’ refers to the identification of a statistical dependency between experimental
variables (e.g., pain perception) and measured brain responses. This encoding procedure is normally achieved using the
traditional voxel-by-voxel mass-univariate analysis of fMRI time series (using, for example, general linear modeling: GLM,
Figure I).

In contrast, ‘decoding’ comprises predicting the same experimental variables based on the measured brain responses.
This decoding procedure is typically achieved using machine learning (e.g., multivoxel pattern analysis, MVPA, Figure I),
which is based on certain features of the fMRI response (e.g., patterns of fMRI activity distributed over many voxels).

Reverse inferences are logically flawed deductions based on affirming the consequent (e.g., if A determines B, when B is
observed one infers that A has occurred). Reverse inferences are notoriously frequent in functional neuroimaging
research, and typically consist in inferring a particular experimental variable (e.g., the perception of pain) from a given
pattern of brain activation (e.g., the so-called ‘pain matrix’) [37,38]. Notably, reverse inferences have a probability of being
correct, which depends on the exclusivity of the relation between the experimental variable and the recorded response
(i.e., it depends on how many variables other than A determine B).

Even if decoding is the reverse prediction of experimental variables from the measured brain response, decoding is
conceptually different from reverse inference: indeed, in most practical applications, decoding analysis does not require
that the relation between the experimental variable and the corresponding brain response is exclusive. For example, most
currently available pain prediction algorithms rely on features of the brain response that are not tested for their necessity or
sufficiency for the occurrence of pain perception.
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Figure I. Relationship between Encoding (Identifying the Statistical Dependency between Experimental
Variables and Brain Responses) and Decoding (Predicting Unknown Experimental Variables from the Brain
Responses). Bottom panel modified from [29].
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objectives. Particularly in the field of pain neuroscience, disregarding the tight relation between
protocol and objective can lead to inaccurate interpretation of results. In this article, we explain
how incorrect conclusions can result when deviating from the allowable objective of a given
machine-learning protocol. We first outline the two main objectives of machine learning in pain
neuroscience, and then clarify some issues related to result interpretation. We end by providing
guidelines to avoid unjustified claims.

Objective 1: Identifying a Pain-Specific Neural Signature
A main objective of machine learning is to identify a ‘neural signature’ or ‘fingerprint’; that
is, a neural correlate of fMRI activity that uniquely encodes a given experimental variable or
perceptual experience [25,26] (Box 1). This is an appealing objective in human pain neuro-
science, given that the amplitude of the fMRI signal, when analyzed with traditional mass-
univariate analysis (i.e., general linear modeling, GLM [27,28]), has failed to identify a unique
signature for pain [29]. Indeed, transient painful stimuli elicit graded responses within a wide
array of brain regions (which has been sometimes unfoundedly labeled as a ‘pain matrix’),
consistently including the primary and secondary somatosensory cortices (S1 and S2), the
insula, and the anterior cingulate cortex (ACC) [30–33]. However, most of these areas are
also activated by equally salient, but never painful, auditory, tactile, and visual stimuli [29,34].
Given that these brain regions are also activated in situations where no pain is present, it is
an incorrect reverse inference to conclude that this pattern of brain activation represents a
pain signature [35–38].

Machine learning potentially offers a way forward, so long as the proper protocol is applied.
Similar to traditional mass-univariate analysis, machine learning can exploit similar features of the
functional neuroimaging response, such as spatial distribution and signal amplitude [39]. Yet, if
machine learning simply exploits bulk differences in signal amplitude to successfully identify a
given experimental variable (i.e., the perceived pain intensity), this does not reflect a unique pain
signature, and the same problem of reverse inference applies to the interpretation of results [35].
Just as in mass-univariate analysis, it is valid to interpret a given result as a ‘pain signature’ if and
only if the relation between the brain response pattern and pain is unique for pain.

To overcome this issue, machine learning should be performed using a protocol that identifies
the possible relation between fine-grained spatial patterns of the brain response and pain (in this
case, machine learning is named ‘multivoxel pattern analysis’, MVPA [40,41]) without making
use of signal amplitude. In addition, the specificity of a possible fine-grained spatial pattern
should be verified against the brain responses elicited by nonpainful but isosalient stimuli, to rule
out the possibility that the same spatial patterns could reflect equally salient stimuli of different
sensory modalities. If these prerequisites are not satisfied, machine learning is no better than
mass-univariate analysis, and the correct classification would be misinterpreted as a specific
neural signature for pain.

Objective 2: Pain Prediction from Neural Activity
When the objective is instead to decode a laboratory measure of brain activity to predict a
subjective painful percept (Box 1), machine learning can be performed using a protocol that
exploits all signal components encoding the subjective percept (typically pain intensity, but
also different qualities of pain). Therefore, both the amplitude and spatial configuration of the
signal can be preserved, because they both have the potential to encode the reported pain
intensity. In particular, the amplitude information should be kept and exploited, given that this
information often, albeit not always, correlates well with subjective pain intensity [42–44].
Indeed, and rightly so, all studies using machine learning with the objective of predicting pain
perception take advantage of the variability in signal amplitude [7,9–14,24]. It is important to
note that, for the practical objective of predicting pain, the reverse inference issue highlighted

Reverse inference: in the context of
human brain imaging, reverse
inference consists in inferring an
experimental variable (e.g., pain
perception) from a pattern of neural
activity (e.g., the brain responses
elicited by a nociceptive stimulus).
The validity of a reverse inference
drawn from neuroimaging depends
on the exclusivity of the relation
between the experimental variable
and the brain responses. For
example, the validity of the inference
that a person is experiencing pain
because the pattern usually seen in
response to nociceptive stimuli is
observed, depends on whether the
same pattern is also elicited by other
stimuli that do not result in painful
percepts.
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in the previous section is less important. Indeed, even if some (or all) features of the signal
exploited to predict pain are not pain specific, but a good prediction is achieved, this can still
be useful. Still, a practically important point is to estimate how often those features (despite
not representing a unique pain signature) allow machine learning to predict pain. Indeed,
most of the features that have been used to successfully predict pain (i.e., bulk signal
changes in several brain regions [7,9]) are likely to fail to predict pain in some contexts. For
example, failure is likely when pain intensity is dissociated from stimulus saliency, given that it
has been shown that these signal changes are also determined by isosalient, but nonpainful,
sensory stimuli [29,34,44].

In the following sections, we suggest some guidelines to improve the use of machine learning in
interpreting fMRI data. We describe in detail key aspects of the analytical steps needed to use
machine learning in relation to the two objectives outlined above. The choices for each analytical
step define the potentially achievable objectives, as well as the physiological conclusions that
can be inferred.

Signal Normalization
As detailed above, the response amplitude of fMRI signal in regions of the so-called ‘pain matrix’,
although often correlated with the intensity of perceived pain, is largely not specific for pain,
because nonpainful stimuli can also elicit graded brain responses that correlate with intensity of
perception [29]. Therefore, if successful machine learning relies on graded levels of response
amplitude, the reverse inference that these features reflect a unique ‘pain signature’ (Objective 1)
is unlikely to be correct. Implementing a strict normalization of fMRI signal amplitude is a possible
strategy to minimize the contribution of graded levels of activation to successful machine learning
(Figure 1) and, therefore, increase the likelihood that the features exploited by machine learning
represent a unique ‘pain signature’ (Objective 1). The amplitude of brain activity at each time
point can be normalized across a number of voxels by subtracting from the signal of each voxel
the mean signal across all voxels of a given region of interest (ROI) or the entire brain, and then
dividing the result by the standard deviation of the signal from all voxels of the ROI (or the entire
brain). As a result of this procedure, in each experimental condition, the voxels constituting the
ROI have a mean of zero and a standard deviation of 1.

This normalization strategy minimizes the contribution of nonpain-specific graded levels of
activation and, therefore, should be performed when aiming to identify a unique pain-specific
spatial signature that cannot be disclosed using the mass-univariate analysis (Objective 1). By
contrast, stimulus-evoked changes in signal amplitude can be preserved when aiming to predict
subjective pain intensity (Objective 2), because perceived pain often correlates with signal
amplitude and, therefore, removing it usually entails a reduction in the accuracy of decoding.
Exactly for this reason, studies aiming to predict pain avoid such a normalization step to
maximize the predictive accuracy of the machine-learning algorithm [9–12,14]. An important
note of caution is that successful pain predictions obtained when machine learning makes use
of bulk signal amplitude likely exploit nonpain-specific neural responses [7,9].

Within-Subject versus Between-Subject Prediction?
To achieve encoding objectives (i.e., identifying a pain signature), machine-learning analyses
should be primarily performed within subjects, while, to achieve decoding objectives (i.e.,
predicting pain), analyses should be primarily performed between subjects (Figure 2). Indeed,
to identify a fine-grained signature (using, for example, MVPA of fMRI signals), within-subject
analyses will avoid the inevitable spatial blurring of responses caused by (i) the functional and
anatomical differences between individuals [45] and (ii) the lack of optimal algorithms to co-
register brains from different individuals [40,41]. If performed at the between-subject level, any
possible signature would be identified at least at the higher, mesoscopic scale of entire portions
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of brain regions. By contrast, machine learning for pain prediction is mostly performed between
subjects, because, in practical applications, pain has to be predicted on new subjects, such as a
patient just after hospital admission, or a healthy participant in a drug trial [9,24]. Machine
learning for pain prediction can be also performed at within-subject level. Obviously, the
usefulness of within-subject prediction is more limited, and the accuracy of such prediction
is higher, because it is not affected by between-subject variability of the response features used
to predict pain [9].
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Figure 1. Effects of Signal Normalization on Spatial and Amplitude Differences in Brain Activation. Normal-
ization of functional magnetic resonance imaging (fMRI) signal is achieved by (i) subtracting from the signal of each voxel the
mean signal across all voxels of a given region of interest (ROI; or the entire brain); and (ii) dividing the result by the standard
deviation of the signal from all voxels of the ROI (or the entire brain). Before signal normalization (A), brain activity in different
experimental conditions could differ in signal amplitude (left column), spatial distribution (middle column), or both (right
column). After signal normalization (B), brain activity mainly differs in its spatial distribution.
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Use of Prior Knowledge When Validating Prediction Performance
In basic and clinical applications of pain prediction, the quality or the intensity of subjective
painful percepts are unknown variables. Obviously, to predict unknown experimental var-
iables, the use of prior knowledge about which variable each trial belongs to is only allowed
when training the machine-learning model, but not when testing its prediction performance
(Figure 3) [19]. Therefore, the prediction performance of machine-learning models should be
validated strictly without using prior knowledge about those percepts. This important
requirement is satisfied only when the prediction is performed on a trial-by-trial level
(‘Predicting’ in Figure 3) [10,11]. However, in some studies of pain prediction [7,46], trials
belonging to the same experimental condition (e.g., stimulus energy) were preliminarily
averaged, and both training the prediction model and testing its performance were per-
formed using averaged brain responses with increased signal:noise ratios. This strategy
(‘Labeling’ in Figure 3) erroneously uses prior knowledge when testing the prediction
performance of the model, resulting in seemingly high accuracy of ‘pain prediction’ (cor-
responding to extremely high sensitivity and specificity; e.g., Table 1 and Figure 1 in [7]). The
resulting ‘prediction’ accuracy is not only artificially inflated, but also does not reflect the real
prediction of an unknown pain level.

This is a crucial point. Indeed, the use of prior knowledge in model testing artificially inflates the
prediction accuracy and, therefore, violates a fundamental rule when machine learning is used to
predict a stimulus feature or a perceptual outcome (Objective 2) [19]. By contrast, when machine
learning aims to identify a spatial signature that encodes a given experimental variable (Objective
1), it is acceptable to use prior knowledge about which experimental variable (e.g., reported
subjective percept) each single trial belongs to when testing the prediction performance of a
model [40,47]. Therefore, although incorrect for decoding objectives such as pain prediction,
testing the prediction performance of a model on trials averaged based on prior knowledge (as
previously done using stimulus energy [7]) is appropriate for encoding objectives, such as
identifying a new condition-specific spatial signature.
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Figure 2. Comparison of Within-Subject and Between-Subject Machine-Learning Protocols. (A) Within-subject
machine learning. The machine-learning model is trained on all trials except one (n–1), and tested on the remaining trial. The
model is cross-validated using each trial as test trial once. Within-subject machine learning classifies the test trial into
category A or B based on a model generated from the same subject. (B) Between-subject machine learning. The machine-
learning model is trained on all trials of all subjects except one (N–1), and tested on all trials of the remaining subject. Cross-
validation is achieved by using each subject as test subject once. Between-subject machine learning classifies each single
trial of the test subject into category A or B based on a model generated from the other subjects.
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Concluding Remarks and Implications for the Assessment of Previous
Studies
Machine learning is extremely promising in pain research because it can identify response
features that cannot be detected using mass-univariate analyses [23]. However, simply using
machine-learning algorithms is not sufficient; the protocols must match the objectives to avoid
erroneous conclusions. For example, given that machine learning can also exploit bulk differ-
ences in response amplitude, when these differences are not removed, a successful classifica-
tion could simply rely on the same information identified by mass-univariate analyses [9]. This is
acceptable if machine learning aims to predict pain (Objective 2), but it represents a significant
issue if machine learning aims to identify a unique signature for pain (Objective 1).

(A) training (subjects #1 to # N–1)

#1

(B) predic�ng (subject #N)
(Without prior knowledge)

Ques�on
Ques�ons

Model boundary

Predic�on accuracy:  72.5% Labeling accuracy: 100%

Ar�ficial increase of
accuracy due to the use

of prior knowledge

(C) labeling (subject # N)
(Use of prior knowledge)

#2 #N–1[...]

[...]

Si
gn

al
 fe

at
ur

e
Si

gn
al

 fe
at

ur
e

Si
gn

al
 fe

at
ur

e
Si

gn
al

 fe
at

ur
e

Si
gn

al
 fe

at
ur

e

BoundaryKey: BA

DoesKey: belong to or ?BA

Key: To-be-predicted trial

Key: Correctly predicted as B
Incorrectly predicted as B

Key: Correctly predicted as A
Incorrectly predicted as A

Key: group belong to A or  B?
group belong to A or  B?

Does
Does

Key: To-be-labeled trial groups

Key: Group correctly labeled as B

Key: Group correctly labeled as A

Figure 3. Predicting versus Labeling: Use of Prior Knowledge in Machine Learning. At between-subject level, the
machine-learning model is trained on all trials of all subjects except one (N–1) (A), and tested on all trials of the remaining
subject. Importantly, predicting (B) the experimental variables A or B is achieved by classifying each single trial of the test
subject into category A or B based on the trained model. Predicting does not exploit prior knowledge. By contrast, labeling
(C) is achieved by classifying two (or more) predefined groups (e.g., category A or B). Labeling uses prior knowledge about
the experimental variable of interest, and typically results in higher accuracy than predicting (e.g., 100% versus 72.5%).
Such prior knowledge is obviously unavailable in most practical applications of machine learning for pain prediction.

Outstanding Questions
Do the functional neuroimaging fea-
tures used to predict pain truly reflect
neural activities that are causally related
to the emergence of pain percepts? Or,
do they reflect neural activities related
to the consequences of painful per-
cepts, but not directly involved in their
emergence (e.g., attentional orienting,
autonomic responses, or motor
preparation)?

Which of these two kinds of neural
activity (causally specific for pain versus
pain byproducts) is more likely to pro-
vide a reliable pain prediction?

Will it be possible to use a machine-
learning classifier trained on functional
neuroimaging data to predict perceived
pain in real-life situations (e.g., when an
individual is admitted to hospital)?

Should functional neuroimaging data
be used as conclusive evidence of an
experiential state of pain in medicolegal
cases?

Should the scientific community agree
on guidelines for avoiding the conflation
of the objectives of pain prediction
versus the identification of pain
signatures?
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Indeed, the validity issues of reverse inferences made from mass-univariate analyses of pain
neuroimaging data [35,36,48] equally apply to the interpretation of the results obtained using
machine learning. A given machine-learning result can be interpreted as reflecting a ‘pain
signature’ (Objective 1) if and only if the relation between the brain response pattern and pain
is unique for pain.

The conclusions we draw here warrant more careful assessment of the interpretations of some
recent machine-learning results in pain neuroscience [7,46,49]. Indeed, one particular study
used a single, mixed machine-learning protocol: machine learning was performed on non-
normalized fMRI data, at a between-subject level, and made use of prior knowledge when
estimating the prediction accuracy [7]. Using this approach, the authors claimed to have
achieved the two objectives of machine learning together. Indeed, they affirmed to have
identified: (i) a specific neurological pain signature (‘NPS’) relying on fine-grained spatial scales,
which (ii) can ‘reliably predict pain across different experiments’ with extremely high accuracy.

However, the claim of having discovered a unique NPS that relies on fine-grained spatial scales is
not entirely justified, because the machine-learning protocol used violates the requirements
needed to identify a unique brain signature of pain (see sections ‘Signal Normalization’ and
‘Within-Subject versus Between-Subject Prediction?’) [7,46]. Furthermore, the seemingly
impressive pain prediction accuracy was obtained by making use of prior knowledge when
decoding the brain responses, a procedure that is incorrect when aiming to predict unknown
experimental variables (see section ‘Use of Prior Knowledge When Validating Prediction
Performance’).

Such sweeping conclusions were only possible by incorrectly conflating encoding (Objective 1)
versus decoding (Objective 2) protocols, which must be applied separately to achieve those
objectives (Box 1). Machine learning is a promising tool, but only by careful application can one
take advantage of its full power to advance pain research (see Outstanding Questions). The
stakes are high: functional brain imaging is increasingly finding practical applications with real-
world consequences [49]. A neural ‘pain signature’ could serve as a biomarker for drug
development, as evidence for pain perception in minimally conscious patients (or other patients
that cannot report pain, such as infants [50]), or as an objective measure of pain to be used in
legal cases. Therefore, it is critical to interpret brain scans accurately, because decisions based
on neural data will only be as good as the science behind them.
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