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The combination of functional magnetic resonance imaging (FMRI)

and electroencephalography (EEG) has received much recent attention,

since it potentially offers a new tool for neuroscientists that makes

simultaneous use of the strengths of the two modalities. However, EEG

data collected in such experiments suffer from two kinds of artifact.

First, gradient artifacts are caused by the switching of magnetic

gradients during FMRI. Second, ballistocardiographic (BCG) artifacts

related to cardiac activities further contaminate the EEG data. Here we

present new methods to remove both kinds of artifact. The methods are

based primarily on the idea that temporal variations in the artifacts

can be captured by performing temporal principal component analysis

(PCA), which leads to the identification of a set of basis functions which

describe the temporal variations in the artifacts. These basis functions

are then fitted to, and subtracted from, EEG data to produce artifact-

free results. In addition, we also describe a robust algorithm for the

accurate detection of heart beat peaks from poor quality electrocardio-

graphic (ECG) data that are collected for the purpose of BCG artifact

removal. The methods are tested and are shown to give superior results

to existing methods. The methods also demonstrate the feasibility of

simultaneous EEG/FMRI experiments using the relatively low EEG

sampling frequency of 2048 Hz.
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Introduction

Functional neuroimaging techniques such as positron emission

tomography (PET) and functional magnetic resonance imaging

(FMRI) have made it possible to map specific areas of the brain
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that are involved in carrying out tasks of differing complexities.

However, such techniques measure brain activity indirectly, i.e.,

they detect a secondary effect of brain activation rather than the

neural activity itself. Furthermore, although such imaging modal-

ities provide good spatial localization, they suffer from relatively

low temporal sampling frequency. Electrophysiological mapping

methods such as electroencephalography (EEG) and magneto-

encephalography (MEG) measure brain electrical activity directly,

and in real time, but suffer from spatial blurring of activation. This

has encouraged the neuroimaging community to investigate

multimodal imaging in order to combine the strengths of the

individual techniques. In particular, the simultaneous combination

of FMRI and EEG has received recent attention. Initial studies

aimed to demonstrate the safety, potential and data quality possible

using this technique (Ives et al., 1993; Lemieux et al., 1997;

Krakow et al., 2000; Goldman et al., 2000). Subsequently, the use

of simultaneous EEG and FMRI has been used to study the

generators of the alpha rhythm (Goldman et al., 2002; Laufs et al.,

2003; Moosmann et al., 2003; Niazy et al., 2004), event-related

brain responses (Bonmassar et al., 1999; Kruggel et al., 2000;

Liebenthal et al., 2003), brain activation during different sleep

stages (Czisch et al., 2002; Liebenthal et al., 2003) and epileptic

activities (Seeck et al., 2001; Krakow et al., 2001; Lemieux et al.,

2001; Iannetti et al., 2002; Bénar et al., 2003).

Common to all simultaneous EEG and FMRI experiments,

however, are the MRI environment artifacts that contaminate EEG

data. There are two kinds of MRI environment artifact. The first

kind is the gradient (or imaging) artifact caused by the switching of

the magnetic field gradients (Felblinger et al., 1999; Allen et al.,

2000). The second kind is the ballistocardiographic (BCG) artifact,

which is caused by heart-related blood and electrode movements

inside the static magnetic field of the MRI scanner (Allen et al.,

1998; Bonmassar et al., 2002), regardless of whether or not MR

scanning is being performed. In this paper, we briefly discuss these

artifacts, review some of the methods previously proposed to

remove them and then propose new methods for their removal.

Additionally, a companion paper by Iannetti et al. (this issue)

further validates our methods by applying them to simultaneous
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laser-evoked potentials (LEPs) and FMRI experiments and

demonstrating the quality of the acquired data. In the remainder

of this section, more detailed information is given about the diffe-

rent kinds of artifact, current methods for their removal, as well as

a summary of our proposed methods. Following the Introduction,

the Methods section details our proposed algorithms. This is

followed by the Validation section, which will describe how the

algorithms were tested. Results and Discussion will then follow.

Gradient artifact

During MR imaging, the magnetic field inside the MRI scanner

continuously changes as a result of the switching of the magnetic

field gradients. The gradients change according to the imaging

sequence being used. In an echo planar imaging (EPI) sequence

typically used in FMRI, gradient switching is repeated each time a

new slice is collected, resulting in artifacts that repeat with the

collection of each new FMRI slice. The amplitude of such artifact

can be 100 times greater than the EEG signal and its frequency

content overlaps that of the EEG, thus gradient artifacts cannot be

simply filtered out. The artifact shape and amplitude varies from

one EEG channel to another depending on the location of the

electrodes and the wire connections. For more details, see

Hoffmann et al. (2000), Anami et al. (2003), Garreffa et al. (2003).

Different approaches have been proposed to remove gradient

artifacts from biological signals collected during MRI scanning.

Hoffmann et al. (2000) proposed a frequency domain method, where

the amplitude and phase of the data were set to zero at frequencies

matching an artifact power spectrum template. However, this

approach suffers from the typical Fringing_ effect common to such

frequency domain filters (Bénar et al., 2003). The most used method

is average artifact subtraction (Allen et al., 2000; Bénar et al., 2003).

This utilizes the repetitiveness of the artifact to form an average

artifact template, which is then subtracted from the EEG data. The

efficacy of this approach has been demonstrated in the literature

(Allen et al., 2000; Bénar et al., 2003; Salek-Haddadi et al., 2003),

though a number of quality and practicality issues still remain.

Firstly, some residual artifacts remain on some channels. Allen et al.

(2000) proposed the use of adaptive noise cancellation (ANC) to

remove these residuals; however, this approach does not remove all

residual artifacts. Secondly, in order tominimize the residuals, a high

sampling frequency is needed. From our experience, some unsat-

isfactory results are obtained from commercial implementation of

this algorithm even at sampling rates of 10 kHz. However, even if

better quality data were to be achieved at such high sampling rates,

the amount of generated data (especially in high electrode density

experiments) limits the length of the experiments and causes

practical problems when the data need to be analyzed using third

party software such as Matlab\ (The MathWorks, Inc., MA, USA).

Fig. 1 shows an example of the gradient artifacts in EEG data

and their origin. After subtraction of the average artifact, some

residuals remain, which result in sharp deflection in the data after

low-pass filtering. This is mainly due to the inaccuracy of the

artifact template being subtracted. This inaccuracy is partly caused

by the fact that the MRI machine and the EEG system are typically

driven by separate clocks, which means that the artifact is not

always sampled at exactly the same location. This introduces a

slight variation in the shape of the artifact from one slice to another.

Also, the average template calculation and subtraction processes

are usually dependent on the triggers received from the MRI

machine that indicate the start of each artifact segment. The
location of these triggers is often slightly inconsistent from one

segment to another, which causes a temporal jitter in the onset of

the different artifact segments and thus degrades the accuracy of

the calculated template. These problems are exacerbated if the

sampling frequency is decreased.

In this paper, we propose a new method for the removal of

gradient artifacts; FMRI artifact slice template removal (FASTR).

In FASTR, a unique artifact template for each slice artifact in each

EEG channel is constructed and then subtracted. Each slice

template is constructed as the local moving average plus a linear

combination of basis functions that describe the variation of

residuals. The basis functions are derived by performing temporal

principal component analysis (PCA) on the artifact residuals and

selecting the dominant components to serve as a basis set. This

technique is demonstrated to be superior to imaging artifact

reduction (IAR) (Allen et al., 2000) and applicable at a sampling

rate as low as 2048 Hz.

Recent independent work by Negishi et al. (2004) has proposed

a similar approach to ours. In contrast to our approach, Negishi’s

work requires the collection of extra EEG data without scanning to

serves as a reference. This could well introduce a number of

problems, as it assumes the two data sets differ only in the

introduction of the gradient artifacts. However, their method

utilizes all estimated principal components (rather than the

strongest few) and has the advantage of automatically weighting

each component depending on its projection on both the

contaminated and clean data; Negishi’s use of PCA is fairly

different and, to an extent, complementary to what we have

developed. More discussion of the differences between the two

approaches is given later.

Ballistocardiographic artifacts

The BCG artifact is a distortion in the EEG data caused by

cardiac-related activities. In a normal, ideal EEG environment it is

usually caused by an electrode being directly above a pulsating

scalp vessel, and the problem can be avoided by changing the

electrode position. Inside the MRI magnet, this problem is greatly

magnified. Causes and characteristics of the BCG artifact have

been described in the literature (Allen et al., 1998; Bonmassar et

al., 2002), and in general it is caused by electrode movement due to

pulsatile scalp and blood movement related to the cardiac cycle.

This movement of electrodes and conductive blood inside the

magnetic field induces the artifacts (Allen et al., 1998). The

magnitude of the BCG artifact may be as much as 200 AV at 1.5 T

(3–4 times that of the EEG) (Allen et al., 1998), it is spread

throughout the heart beat period and it can be observed across the

scalp (Allen et al., 1998), although its magnitude and shape can

vary considerably from one EEG channel to another. In contrast to

the imaging artifact, although the basic shape of the BCG artifact is

similar from one occurrence to the next in any single EEG channel,

there exists considerable variation in the artifact shape, amplitude

and scale over time.

Several approaches have been proposed to remove the BCG

artifact. Adaptive filtering has been proposed by Bonmassar et al.

(2002): a piezoelectric sensor was used to generate a reference

BCG signal, which was then used to filter out BCG contributions

from the EEG. This method is computationally expensive, requires

the use of an extra sensor and assumes that no EEG correlated

information is present in the sensor signal. Spatial PCA and

independent component analysis (ICA) filters have also been



Fig. 1. Gradient artifact in EEG data. (a) The effect of FMRI on EEG data. Notice the high amplitude noise at approximately 29 s when scanning commenced.

(b) The gradient artifact caused during the acquisition of a single slice in one of the EEG channels. Some features corresponding to the EPI sequence used are

labeled. (c) Selected EEG channels with severe residual artifacts after cleaning with conventional average subtraction. The vertical grey lines indicate FMRI

slice timings. The source of the residual imaging artifacts is the incomplete removal of the artifacts in the first place as shown in panel (d). The high amplitude

signal shown in grey is the residual artifact before low-pass filtering. After low-pass filtering, these residuals are suppressed but still remain in the EEG-this is

shown in black.
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proposed (Bénar et al., 2003; Srivastava et al., 2005). One problem

with these approaches is that they necessitate the presence of a

large number of sensors. Also, the identification of artifact

components can be subjective and is usually done manually. Most

importantly, spatial filters assume that all the sensors are

contaminated by common sources, which is not the case. The

BCG artifact derives from sources that are rotating/moving, which

contaminate different sensors at different points during the cardiac

cycle with different effects. The most commonly used method for

removing the BCG artifact is the average artifact subtraction

(AAS) (Allen et al., 1998), in which a moving average artifact

template is computed from successive artifact occurrences, then

subtracted from the data. This assumes that the BCG artifact is a

slowly changing signal that can be accurately captured by a

moving average. This can result in residual artifacts in the data. A

variation of this approach was used by Goldman et al. (2000),

where instead of computing a simple moving average, a weighted

average is used such that artifacts that lie further from the one

being processed are less emphasized. Sijbers et al. (2000) and

Ellingson et al. (2004) used a median filter to construct a template
which is then scaled in time and amplitude to fit each artifact

instance. Again, all these approaches assume a temporal relation-

ship between the different occurrences of the artifact. Another

central issue to such subtraction-based methods is the accurate

detection of heartbeat locations. EEG systems often provide limited

ECG recording facilities, e.g., one single bipolar channel. In

addition, the ECG is usually distorted inside the MR machine due

to blood conductivity (Wendt et al., 1988). These factors can lead to

inaccurate detection of QRS peaks in the ECG, especially when

simple thresholding detection methods are used (Allen et al., 1998).

Similar to the removal of the residual gradient artifacts, we

propose a method where a basis set is constructed by performing

temporal PCA on each EEG channel data. The basis set is then fitted

to, and subtracted from, each artifact occurrence. This approach has

the advantage of not assuming any temporal relation between the

different occurrences of the BCG artifact in a given EEG channel.

Rather, the assumption is that over a sufficient period of EEG

recording from any single EEG channel, the different BCG artifact

occurrences in that channel are all sampled from a constant pool of

possible shapes, amplitudes and scales. The principal components
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of all the occurrences can then describe most of the variations of the

BCG artifact in that channel. This method is shown to be superior to

AAS (Allen et al., 1998). In addition, an accurate, robust procedure

based on the work of Christov (2004) followed by a correction

algorithm is proposed for the accurate detection of QRS complexes

in ECG data collected inside the magnet. The work of Negishi et al.

(2004) also sheds some light on the usability of temporal PCA to

remove BCG artifacts. However, they affirm that their results were

somewhat unsatisfactory and more work was needed. More

discussion about this is given later.
Methods

Gradient artifact removal

Our developed algorithm (FMRI artifact slice template removal,

FASTR) is based on constructing a unique template for each artifact

segment, in each channel, generated during the acquisition of a

single FMRI slice. The algorithm comprises four stages. First, the

signal is interpolated (up-sampled) and the slice-timing triggers are

adjusted to optimize the alignment. Second, we perform a local

artifact template subtraction, in which a moving average artifact

template is constructed for each slice artifact then subtracted. Third,

the artifact residuals are estimated using basis functions derived

from performing PCA on each channel’s artifact segments. The

reason for splitting the artifact subtraction into two stages is that we

need the algorithm to be as adaptive as possible; the algorithm needs

to adjust to sudden changes in the artifact shape (due to head

movement for example). Performing PCA repeatedly on small

sections of the data (to make it adaptive) would produce less than

optimal basis functions. On the contrary, the moving average

subtraction performed in stage 2 is adaptive and removes more than

98% of the artifacts. Hence, we opted to make the bulk of the

artifact removal as adaptive as possible while maintaining the

efficiency of using PCA to describe and remove the residuals.

Fourth, we perform adaptive noise cancellation (ANC) (Allen et al.,

2000). ANC removes any components in the data that are correlated

with a reference. By using the subtracted noise as a reference,

artifact components not captured in the basis set are removed. More

details about the function of the ANC filter is given later. The

process encompassing all the four stages is referred to as FASTR.

Fig. 2 shows a schematic of the FASTR algorithm. The schematic

and the following details are for a single channel of EEG data.

Stage 1: slice-timing trigger alignment

During the acquisition of simultaneous EEG/FMRI data,

triggers are sent by the MRI machine at the start of each slice

acquisition. These triggers are usually a simple 5-V TTL signal that

can be read by the EEG amplifier and inserted in the data to indicate

the starting location of each slice acquisition and the corresponding

slice artifact (to be used in subsequent steps to form the artifact

template). However, since the MRI machine and the EEG system

are driven by separate clocks, some degree of misalignment—

‘‘jitter’’—may occur in the exact location of the registered trigger

relative to the artefact from one slice to the next. The jitter gets

worse as the EEG sampling rate is reduced. Relying on these

triggers for time-locking slices to construct an artifact template

would therefore not be optimal. To remedy this problem, the first

channel data (or any other EEG channel data) is sinc interpolated

(up-sampled) to bring the sampling rate to about 20 kHz and then
divided into segments according to the slice-timing triggers. In this

paper, the term artifact segment is used to indicate a window

covering the duration of a single slice artifact occurrence. The first

artifact segment is then taken as a reference. For each of the

remaining slice artifact segments, the trigger location is adjusted to

maximize the correlation with the reference. Although this process

can be repeated for each EEG channel, this is not only computa-

tionally inefficient but is also unnecessary. We have found that in

practice adjustments to one EEG channel apply equally to them all.

Stage 2: local slice artifact template subtraction

For any interpolated channel, Ya, which is collected during the

acquisition of continuous FMRI, we also generate a 1-Hz high-pass

filtered version, Yh. The high-pass filter serves to remove any slow

drifts in the EEG to ensure that the different artifact segments used

in the average artifact estimation have the same baseline. This is

useful since the artifact signal itself is unlikely to have any slow

drifts or shifts in the baseline from one segment to another, thus the

high-pass filtering will improve the artifact estimation. Yh is then

segmented into N (N = volumes � slices) equal-sized segments

according to the adjusted/aligned slice-timing triggers. Each of

these segments is a 1 � q vector, where q is the number of time

points spanning each artifact interval. We then calculate the local

moving average artifact template for each segment as:

Aj ¼
1

jI jð Þj
X

: a I jð Þ
Yh

: ð1Þ

In Eq. (1), j = 1, 2 . . . N indexes the slice artifact segments, Aj

is a 1 � q vector of the local moving average artifact template for

segment j and : is an index of the different artifact segments to be

averaged. I( j) is an index function, which determines which

segments are included in the average. The slice segments in I( j)

are centered around segment j and are chosen so that there a is

sufficient time gap between them to ensure that there is no EEG

autocorrelation between the segments included in the template

computation. This approach removes any data that correlates with

the FMRI slice acquisition indiscriminately. The user needs only to

determine how many elements to include in I( j), i.e., the length of

the moving average window, and how much gap to leave between

the selected segments. The selection of averaging window length

|I( j)| governs the adaptivity of the algorithm to changes in

the artifact waveform (due to head movement for example). The

shorter the window length, the more adaptive the algorithm. On the

other hand, the shorter the window length, the more noisy the

artifact template and the more real EEG data are likely to be

removed. The gap between selected segments should be judged by

how close the segments are in time. Based on our experience, it is

safe to assume that on the time scale of a slice artifact, EEG is

uncorrelated after 350 ms. Hence, a gap of at least that much time

should be left between successive segments included in the

average. Finally, the computed template, Aj, is scaled by a constant

a to minimize the least squares between the template and the data.

We can then subtract the scaled artifact from Y h to construct a

signal, Y r, which is the cleaned EEG data with residual artifacts.

Stage 3: gradient residual artifacts removal using optimal basis

sets (OBS)

The vector Y r that results from the previous step is still likely to

be contaminated with residual artifacts due to slight variations in

the shape of the artifact from one slice to the next. The amount of



Fig. 2. Schematic flow chart of the FASTR algorithm. For each EEG channel, the signal is sinc-interpolated (up-sampled) and the slice-timing triggers are

adjusted. The interpolated signal, Ya, is then high-pass filtered at 1 Hz to form a signal, Y h, which is then used to construct an average artifact template A for

each slice segment. A scalar a is found from A and Y h to minimize the least squares between each artifact and its template. Subtracting aA from Y h produces a

cleaned EEG with residual gradient artifacts, Y r. Y r is then used to construct an optimal basis set (OBS), B, describing the residuals variations. B is fitted to

each segment and a final noise signal, Z, is formed. A further cleaned signal is calculated as Y n = Ya � Z. Both Y n and Z are low-pass filtered and down-

sampled to the original frequency to form Y d and Zd, respectively. Zd is then used as a reference in the adaptive noise cancellation filter. The input to the filter

is a high-pass filtered version of Y d. The output of the filter is then subtracted from the original Y d to result in the clean EEG data.
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variation is a function of the sampling rate and the synchrony

between the clocks of the MRI and EEG systems. From Y r, we

derive a set of basis functions for the residuals. First, a residuals

matrix Sp � q is formed, where p is the number of artifact segments

included. As in the previous step, not all segments are included in

S. Instead of a fixed gap between the selected segments, however,

segments should be selected after applying a gap of s or s + 1 in a

random order, where s is the minimum gap determined in the
previous stage. This is to safeguard against only capturing

variations that occur every s + 1 segments and to insure that all

variations of the artifact residuals are sampled. For example, if it

were determined in stage 2 that one slice artifact segment should be

skipped (i.e., s = 1) when calculating the local artifact, then in

selecting segments to include in S, we would sometimes skip one

segment (s) and other times skip two segments (s + 1), in no

particular order (randomly). The rows of S are then demeaned, i.e.,
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the mean of each segment is removed. The column-wise mean is

also calculated and subtracted from the columns of S, i.e., the mean

effect of the residuals is calculated and removed. PCA is then

performed on S. The different variations in the residual artifacts

will be captured in the principal components of S, ordered

according to the variance explained by each component. For

simplicity, we use the term principal component (PC) to refer to the

projection of S onto the principal component coefficients. The first

C PCs, including the calculated mean effect, constitute an optimal

basis set (OBS), Bq � C for describing the gradient artifact residuals

variations. The number of components C is selected based on the

amount of variance explained by the PCs. It was observed that for

most channels in a single data set, the same number of components

is needed to explain the variance of the artifact. It is recommended

that C is chosen conservatively, since including unnecessary

components may result in the loss of data.

Each segment of Y r can now be written in terms of B as:

Yr V
j ¼ Bbj þ ejV ð2Þ

where bj is a C � 1 vector of weights to fit B to Y r and Ej is a an

error term for the segment. The weights for each segment are then

estimated by least squares and added to the artifact noise found in

stage 2 to construct the final estimation of the gradient artifacts, Z,

and an artifact-subtracted EEG data Yn (see Fig. 2).

Note that the final estimated noise is subtracted from the

original interpolated EEG data, not the high-pass filtered version

used for the artifact estimation, since the removed baseline drifts or

slow oscillations might be of interest to the user. Both Z and Yn

are low-pass filtered at 70 Hz then down-sampled back to the

original sampling frequency to form Z d and Yd, respectively.

Although stages 2 and 3 contribute to the same desired outcome,

the approach taken in each is complementary to the other. In

general, the process as a whole should be adaptive and accurate.

Stage 2 works to remove the bulk of the artifact variance and is

adaptive to sudden changes in the artifact shape. However, the

moving average approach in stage 2 does not capture the exact

artifact shape. Stage 3 serves to remove the details of the residuals.

This necessitates that the OBS accurately describes the variations

in the residuals. To this end, the residuals matrix S needs to have

as many entries as possible for the PCA to produce an accurate

OBS; this requirement limits the adaptivity of the OBS approach.

At the same time, PCA need not be performed on the whole length

of the recording. In our implementation, each 1-min portion of the

data is processed at a time, partly for computer memory concerns,

but also to provide a degree of adaptivity.

Stage 4: adaptive noise cancellation

As suggested by Allen et al. (2000), the final step is the

removal of any remaining residuals using adaptive noise

cancellation (ANC). Fig. 2 includes a schematic of the ANC

filter. In ANC, a signal contaminated with noise constitutes the

input to the filter, Y. The source of the noise is assumed to be

known and is referred to as the reference signal. The actual noise

in the signal is assumed to be correlated with the reference in an

unknown manner. The ANC filter holds a vector of weights,

which is used to calculate the output of the filter at each time

point. The weights of the filter are updated at each time point

using the least mean-square (LMS) algorithm. In general, the

performance of the filter is controlled by the step size, l, and the

length of the weight vector, L, which control the stability and
convergence of the filter. When the filter converges, it estimates

the noise from the signal that is correlated with the reference.

However, the accuracy of the estimation is limited by the quality

of the reference and choice of l and L. Also, high power

fluctuations in the input can cause the filter to diverge. For in-

depth examination of adaptive filters, see Haykin (1986).

In FASTR, the final artifact estimation Zd is used as the

reference in the ANC. In contrast, Allen et al. (2000) used a low-

pass filtered, binary vector of 1s and 0s, where 1s indicates the

slice timings as a reference in their implementation of ANC. Our

choice of l and L were similar to that of Allen et al. (2000);

however, we have not investigated the optimization of these

parameters in this work. Since ANC removes from the data

components that are correlated with the reference, we think that the

subtracted noise Z provides a more accurate reference for this

purpose and was found to have less of an effect on real data.

Additionally, the input to the ANC filter is a high-pass filtered

version Yd. The cut-off frequency is selected to be half of the

fundamental gradient artifact frequency, i.e., fc = slices/2TR. The

output of the filter is then subtracted from the original Yd to

produce the final clean EEG data.

We have found that the ANC filter consistently converged and

removed components which were clearly related to the artifact.

However, on its own it fails to adapt quickly enough to adequately

remove all residuals. This is probably due to not providing an

accurate enough reference. In addition, on its own, ANC occa-

sionally diverges when applied to channels with high amplitude

residuals. However, we have found that applying it as a last step

removes any remaining residuals even though in most cases they

are not detectable by visual inspection. These residuals can be due

to the fact that the basis functions in the OBS do not perfectly

describe all residual variations.

Heart beat detection

As a prerequisite to removing BCG artifacts, a robust QRS

complex detection algorithm is needed. We propose a modification

to the algorithm by Christov (2004) for the detection of the QRS

peaks. In addition, we present a correction algorithm that operates

on the results of the detection process to adjust for any false

detection.

Combined adaptive thresholding

In the original algorithm, a complex lead is first constructed

from several ECG channels. The algorithm is then applied to the

complex lead. The signal constructed on which to apply the

algorithm is referred to as the complex lead . As in most

simultaneous EEG/FMRI experiments reported in the literature,

ECG is recorded from a single bipolar channel and thus an

alternative complex lead is needed. First, the ECG channel is band-

pass filtered from 7 to 40 Hz. A moving average filter of samples

in 28 ms intervals is then applied to suppress electromyogram

noise (Christov, 2004). The complex lead is then calculated by

applying the k-Teager energy operator (k-TEO) (Mukhopadhyay

and Ray, 1998; Kim et al., 2004) to the filtered ECG, then setting

all negative values to zero:

X nð Þ ¼ max E2 nð Þ � E n� kð ÞE nþ kð Þ; 0
� �

ð3Þ

where X is the complex lead, n is the time index, E is the filtered

ECG and k is a frequency selection parameter (Kim et al., 2004).
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By adjusting k, the TEO can be made sensitive to emphasize a

desired frequency:

k ¼ fs

4fd
ð4Þ

where fs is the sampling frequency and fd is the desired frequency

to emphasize. fd is set to the 10th harmonic frequency of the ECG

(usually around 10 Hz). Next, the combined adaptive thresholding

algorithm is applied (Christov, 2004). An adaptive threshold

(MFR) is applied to the complex lead X. The MFR threshold is

calculated as the sum of three thresholds, M, F and R. A QRS peak

is detected when X(n) � MFR(n). The reader is referred to the

original paper (Christov, 2004) for a detailed discussion of the

original algorithm, the different thresholds and their interpretation.

QRS peak correction algorithm

A binary vector of ones and zeros indicating peak locations, P, is

created from the previous step, where a value of 1 indicates a QRS

peak. The median, X̃RR, and standard deviation, rRR, of all RR

intervals are calculated. P is divided into U 20-s sections, Pu
s, where

u = 1, 2 . . .U. The differentPu
s sections overlap by 5 s. For any given

Pu
s with Q peaks, i.e., Q ones in the section, there will be Q � 1 RR

intervals. The RR intervals in each section are then calculated. For

any RR(r) < (X̃RR � 3rRR), Pu
s (nRR(r)) is set to zero, where r = 1, 2

. . .Q � 1 is an index of the different peaks (ones) in each section and

nRR(r) is the time index n in Pu
s where RR(r) occurs. This implies

that wherever the difference between two consecutive peaks is less

than the median RR minus 3 times the standard deviation of all RR

intervals, the second peak location is set to zero, i.e., the peak is

removed. This process removes false positives. After all false

positives are corrected for a section Pu
s, the original P is updated

before the next section is processed. The original ECG is then

divided into equal segments according to the corrected peaks in P

and the segments are averaged to form an average ECG beat

waveform. This waveform is then taken as a reference and the peaks

in P are adjusted as to maximize the correlation between each heart

beat waveform in the ECG and the reference waveform. P is then

divided again into U 20-s sections, Pu
s, as described above and the

RR intervals are calculated along with median RR for each section,

X̃RRu. For any RR(r) > (1.5� X̃RRu), Pu
s (nRR(r � 1) + X̃RRu) is set to

1. This means that wherever the difference between two consecutive

peaks is more than 1.5 times the median RR for that section, a peak is

added at time X̃RRu after the first peak, i.e., a peak is added where

missing. This process corrects for false negatives. After all false

negatives are corrected for a section Pu
s, the original P is updated

before the next section is processed. Finally, the peaks in P are again

adjusted using correlation as described previously.

Ballistocardiographic artifact removal

Like gradient artifact residuals, BCG artifacts are time varying.

However, the variations in BCG artifacts are unpredictable and

more difficult to characterize. We assume that each occurrence of a

BCG artifact, in any given EEG channel, is independent of any

previous occurrence. Moreover, we assume that the different

occurrences are sampled from an unknown set of possible

variations. These assumptions present the use of OBS as an ideal

solution, where the principal variations can be captured by doing a

PCA analysis on a matrix of BCG artifact occurrences. First, all

QRS peaks are shifted forward in time by 210 ms, which is a
standard delay between QRS complexes and the occurrence of

BCG artifacts (Allen et al., 1998). Then, for each channel in the

EEG data, all BCG artifact occurrences are aligned in a matrix and

PCA is performed. The first 3 PCs (including the mean effect) are

taken as an OBS. The OBS is then fitted to, and subtracted from,

each BCG artifact occurrence. The process is repeated for each

channel.

Implementation

All algorithms were implemented in Matlab\ (The MathWorks,

Inc., MA, USA) as plug-ins for the EEGLAB Toolbox (Delorme

and Makeig, 2004) and they can be downloaded for use under the

General Public Licence (GPL-Free Software Foundation, Inc.,

Boston, MA). EEGLAB was also used in the validation and

visualization of the methods including most of the EEG time series

and topographical plots.
Validation

Data acquisition equipment

EEG and ECG data were recorded using the SystemPLUS

EEG system and an SD32 MRI amplifier (Micromed s.r.l., TV,

Italy). The system is capable of recording from 30 common

reference EEG channels and two bipolar channels to be used for

electromyogram (EMG), electrocardiograph (ECG) or electrooculo-

gram (EOG) recordings. All channels had 10 kV current limiting

resistors and 600 Hz, 20 dB/decade low-pass filters to protect

against RF noise. All channels also had 0.15 Hz, 40 dB/decade

high-pass filters. A SigmaDelta analog-to-digital converter (ADC)

with anti aliasing filtering was used. The system had a sampling

frequency of 2048 Hz, a dynamic range of T25.6 mV and a

resolution of 12.2 nV. The headbox containing the amplifiers, filters

and ADC hardware is placed in the scanner room and the signal is

transmitted via optical fibers to the acquisition workstation in the

console room. FMRI was performed using a 3-T Varian Inova

scanner. Excitation (slice-timing) triggers from the MRI machine

were recorded in the EEG data.

Gradient artifact removal

EEG data were collected during continuous FMRI using an echo

planar imaging (EPI) sequence. For the purpose of this validation,

EEG was collected from only 15 EEG channels: FP1, F3, Fz, F8,

C3, Cz, T4, Pz, P4, O2, AF4, FC1, PO3, PO4 and FC5 according to

the 10–20 international system. All channels were referenced to a

common electrode at the FCz location. The ECG was recorded

using a single bipolar channel. 40 FMRI volumes were collected

with a TR = 3 s and 21 axial slices per volume for a total scanning

time of 2 min. The subject was instructed to open and close his eyes

in periods of 10 s during scanning using the scanner communication

system and earphones. EEG was also recorded while the subject

repeated the same task inside the scanner but without FMRI.

The data were first cleaned using just the subtraction of the

local average artifact template, then channels with visible residual

gradient artifacts were used for validation comparisons. The

following EEG channels had visible residual gradient artifacts

and were used in the validation: F8,T4, Pz, P4, O2 and PO4. We

refer to these channels as the validation channels.
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FMRI artifact frequencies overlapping the EEG frequency

band occur in discrete frequency intervals—‘‘bins’’. The

fundamental frequency bin is the number of slices collected

per second, e.g., for 21 slices collected during a TR of 3 s, the

artifact frequency bins will be 7, 14, 21 Hz . . . etc. Leakage

into the T1-Hz region around these bins is observed. To assess

the performance of each stage of the algorithm, the power in the

7-, 14-, 21-, 28- and 35-Hz frequency bins is compared before

and after the slice alignment and the PCA/OBS steps.

Frequencies above 35 Hz can be removed using low-pass

filtering since they are generally not of biological interest. The

same comparison is also performed between the complete

FASTR and IAR algorithms (Allen et al., 2000). The

implementation of IAR used did not incorporate the interpola-

tion scheme described by Allen et al. (2000), as this requires the

availability of a high-resolution slice-timing signal, which was

not available in this study. Allen et al. (2000) used a slice-

timing signal with a resolution of 10 As as a reference to

interpolate the artifact segments before calculating the average
Fig. 3. Quality of EEG after cleaning gradient artifact using only local artifact temp

clear that slice-timing triggers alignment has a profound effect on the quality of
artifact template. This will inevitably render the performance of

the implemented IAR algorithm suboptimal, resulting in severe

residual artifacts. However, this test is not aimed at evaluating

the general performance of IAR, but rather to compare its

performance to FASTR given a generic setup with limited

capabilities, i.e., low sampling frequency for both data and slice-

timing signal. In addition, assuming that the performance of

FASTR would resemble that of IAR after the slice-trigger

alignment and average artifact removal steps, ANC was applied

after these two steps to demonstrate its inability to totally

remove the residuals on its own. No explicit comparison was

done with raw, uncleaned data since the effectiveness of the

average artifact subtraction principle has already been tho-

roughly demonstrated (Allen et al., 2000; Salek-Haddadi et al.,

2003; Bénar et al., 2003). The aim here is to demonstrate the

effectiveness of the slice alignment and PCA/OBS for reducing

the residuals and compare the overall performance with the

results achieved using the IAR method (Allen et al., 2000),

given the available setup and hardware.
late subtraction without slice alignment (a) and with slice alignment (b). It is

the cleaned data especially for data collected at low sampling rates.
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Qualitatively, the EEG was examined for features known to be

in the data. One kind of feature is the BCG artifacts. Such artifacts

are recorded even without scanning and have distinct, repetitive

shape for each channel. The EEG was examined to see if these

signals are still present after the FASTR algorithm. The other

feature is the alpha rhythm (¨10 Hz), which appears on posterior

electrodes when the eyes are closed. The appearance and

disappearance of the alpha rhythm according to the experimental

task was examined and the data were compared to that collected

without FMRI, while performing the same task. Finally, the quality

of the cleaned ECG signal was also examined. Unlike the EEG, the

ECG has a unique shape and features, and any distortion or loss of

data can be easily noticed.

Heart beat detection

The ECG of 10 subjects was collected during FMRI and

processed to remove the gradient artifacts. The quality of each

ECG data was subjectively classified as poor, good or excellent

depending on the visibility of the QRS complex and its peak

height relative to other features in the signal such as the T wave.

For each ECG recording, the total number of QRS complexes/

heart beats was counted manually. This total count is considered

the true positive number, TP, of QRS complexes. Any QRS

complex not detected by the algorithm was considered a false

negative, FN. Any QRS complex detected in the absence of an

actual QRS complex was considered a false positive, FP. If a QRS

complex was detected but its position had a time-shift error, i.e.,

the algorithm indicated the location of the QRS a little early or

late, this was considered both as a false negative and a false
Fig. 4. Effect of slice-timing triggers alignment on the power of gradient artifact fre

channel before cleaning any artifacts. The fundamental frequency bins of the artifa

same channel after removing the local average artifacts without slice alignment, i.

after interpolation and slice alignment, i.e., stages 1 and 2 of FASTR. The reductio
positive. The sensitivity, Se, and specificity, Sp, were then

calculated for each data set as:

Se ¼
TP

TP þ FN
ð5Þ

Sp ¼
TP

TP þ FP
ð6Þ

Ballistocardiographic artifact removal

Eight data sets from subjects participating in a simultaneous

EEG/FMRI experiment (see the companion paper by Iannetti et al.,

this issue) were used. The data were 23 min in duration and were

cleaned of gradient artifacts using the FASTR algorithm.

Two quantitative tests were used. For the first test, each data

set was divided into epochs each spanning �0.5 to 1.2 s around a

QRS peak. The average BCG artifact was then found for each

channel by averaging all epochs. Assuming no correlation

between the EEG and the QRS peaks, this produces the average

BCG artifact for each channel in each data set. The mean power

of the BCG artifact in each channel was then calculated by taking

the mean of the squares of each average BCG artifact. The same

procedure was applied to the same data sets after removing the

BCG artifacts using the OBS and AAS (Allen et al., 1998)

methods to estimate the residual BCG artifact. The amount of

residual BCG artifact power (in % of original power) in each

channel was compared for both methods. The results were

averaged over all data sets. The limitation of this test is that it
quencies. The black dotted trace shows the power spectrum of a typical EEG

ct can clearly be seen at 7, 14, 21, 28 and 35 Hz. The solid black line is the

e., stage 2 only of FASTR. The dashed red line is the same channel cleaned

n in power at the artifact fundamental and harmonic frequencies is apparent.
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assumes that the residuals will not be random, and thus can be

captured in the average, i.e., if the residuals left by the algorithm

are not similar from one occurrence to another (i.e., random) they

will cancel each other out and will not be detected in this test. On

the other hand, this test has the advantage of not including any

real EEG information in the estimate of the residuals, assuming

the EEG is uncorrelated with the cardiac cycle and will cancel

out in the average.

For the second test, a measurement of the artifact energy

computed from the power spectrum was used. For each data set,

the power spectrum of each channel data was computed. Also,

the first ECG harmonic frequency was found from the ECG data.

The BCG artifact has a power spectrum similar to the ECG, with

power peaks at the harmonics of the heart rate. The energy of

the BCG artifact in each channel was found by summing the

power from the first ten harmonics. This measurement is

repeated after removing the artifact using both the OBS and

AAS (Allen et al., 1998) methods. Again, the results were
Fig. 5. Effect of residual estimation and removal using OBS on EEG data quality. (

triggers alignment and local moving average subtraction, but without residual es

remove the gradient artifact residuals.
averaged over all data sets. In this test, no assumption about the

repetitiveness of the residuals is made. However, this test is

limited by the fact that the harmonic frequencies of the BCG

artifact will inevitably also contain information about the EEG

signal.

Qualitatively, the algorithm was applied to data sets of subjects

performing a paradigm involving opening and closing the eyes to

examine the quality of the recovered alpha rhythm elicited by this

procedure.

Application to laser-evoked potentials recorded during FMRI

The algorithms described in this paper have been applied to EEG

data collected simultaneously with FMRI during laser nociceptive

somatosensory stimulation. A companion paper describes in detail

the feasibility of recording laser-evoked potentials (LEPs) during

simultaneous FMRI and shows that LEPs collected during FMRI

are not significantly different from LEPs collected in control
a) EEG traces after stages 1 and 2 of the FASTR algorithm, i.e., slice-timing

timation and removal using OBS. (b) The same trace after using OBS to
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sessions outside the scanner using the same equipment and

experimental design (Iannetti et al., this issue).
Results and discussion

Gradient artifacts removal

In the first stage of the FASTR algorithm, the slice-timing

triggers are adjusted to ensure that the moving average captures the

best possible representation of the local artifact.

In Fig. 3 the effect of slice-timing trigger alignment on the

quality of the cleaned EEG data can clearly be seen. Both plots in

Fig. 3 are cleaned only by removing the local average slice artifact.

The top plot shows EEG data cleaned using the original triggers

recorded during imaging, i.e., performing stage 2 of the FASTR

algorithm only. The bottom plot shows EEG data cleaned after

interpolation and trigger alignment, i.e., cleaning using stages 1

and 2 of the FASTR algorithm. The severity of the residual artifacts

due to not adjusting the position of the slice triggers is directly

proportional to the sampling frequency of the EEG, as expected

when asynchronous clocks drive the EEG and MRI systems. This

is quite a common scenario given any independent MRI and EEG

equipment not modified to be driven by a linked clock.

Fig. 4 shows the power spectrum of an EEG signal from a

representative channel before any artifact removal and after the

removal of the local average artifact with and without slice-timing

trigger alignment. A significant reduction of power in the artifact

frequency bins is found. On average in these channels, slice-timing

trigger alignment reduced the power in the 7-, 14-, 21-, 28- and 35-
Fig. 6. Effect of OBS estimation and removal on the power of gradient artifact freq

channel before cleaning any artifacts. The fundamental frequency bins of the artifa

same channel after slice trigger alignment, removal of local moving average artif

FASTR. The dashed red line is the same channel cleaned after slice trigger align

removal, i.e., stages 1 through 3 of FASTR. The reduction in power at the artifac
Hz frequency bins by 8.5%, 16.2%, 36.7%, 48.5% and 45.8%,

respectively.

Residuals after stages 1 and 2 of FASTR can still be seen in the

validation channels. Fig. 5 shows the EEG before and after

applying OBS fitting and subtraction to the residuals. It is clear that

the remaining residuals have been removed from the six

contaminated channels. The other channels do not exhibit any

obvious changes in the quality.

Fig. 6 shows the power spectrum for a typical residual-

contaminated EEG channel before and after OBS fitting and

subtraction. Again, the power at the artifact frequency bins is

greatly reduced. On average in the validation channels, the artifact

powers were reduced at the 7-, 14-, 21-, 28- and 35-Hz frequency

bins by 30.4%, 45.2%, 85.9%, 88.7% and 70.1%, respectively,

compared to the previous stage.

The final stage in FASTR is adaptive noise cancellation. Fig. 7

demonstrates how ANC is unable to remove all residual artifacts

on its own. ANC in Fig. 7 was applied to the output of FASTR

after slice-timing trigger alignment and average artifact removal

only, assuming that the output of this would resemble IAR if an

interpolation scheme was possible using a high resolution slice-

timing signal.

It was noticed that using the subtracted overall noise from

stages 1 to 3 as a reference in the filter instead of a binary vector

was less likely to remove real data. This was noticed in the shape

of the BCG artifacts, since they appeared to be slightly distorted

from their original shape after ANC using a binary reference,

whereas using the subtracted noise as a reference did not cause the

shape to distort. Both, however, seemed to have similar effect on

further removing any remaining residuals.
uencies. The black dotted trace shows the power spectrum of a typical EEG

ct can clearly be seen at 7, 14, 21, 28 and 35 Hz. The solid black line is the

acts but without OBS estimation and removal, i.e., stages 1 and 2 only of

ment, removal of local moving average artifacts and OBS estimation and

t fundamental and harmonic frequencies is clearly visible.



Fig. 7. Limited effectiveness of ANC for the removal of residual gradient artifacts. (a) EEG traces after stages 1 and 2 of the FASTR algorithm, i.e., slice-timing

triggers alignment and local moving average subtraction, but without residual estimation and removal using OBS or ANC. (b) The same trace after using ANC

only to remove the gradient artifact residuals. Although ANC reduces the residual artifacts by about 50%, it is unable to completely resolve the problem.
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For the final validation of FASTR, the results of the whole

FASTR algorithm (i.e., stages 1–4) were compared to the results

of IAR plus ANC as proposed by Allen et al. (2000), excluding

the interpolation scheme. Fig. 8 shows EEG data cleaned with

FASTR and IAR and compares them to EEG data collected inside

the scanner but without any scanning. Overall, using FASTR

results in cleaner EEG with quality that rivals EEG collected

without any scanning. Data collected during and without FMRI

both had the same paradigm of opening and closing the eyes. In

the section of data shown, the subject closed his eyes at

approximately 39.5 s in the data collected during FMRI (a and

b) and at approximately 10.5 s in the data collected without

scanning. The eye closure events are aligned in the data sets and

the alpha rhythm can clearly be seen in the posterior electrodes.

Additionally, the BCG artifacts can also be seen correlated with

the ECG; a feature known to exist in the data. The ECG is also

shown to be preserved.
Fig. 9 shows the power spectrum for a typical residual-

contaminated EEG channel before and after removing the gradient

artifacts using both the IAR and FASTR algorithms. The power at

the artifact frequency bins is greatly reduced when using FASTR

compared to IAR. On average in the validation channels, the

artifact powers were reduced at the 7-, 14-, 21-, 28- and 35-Hz

frequency bins by 32.3%, 13.1%, 51.6%, 63.6% and 87.8%,

respectively, when using FASTR compared to IAR.

Heart beat detection

Of the ten ECG recordings used, one was rated to be

excellent, six were rated good, while three were judged to be of

poor quality. A sample of different ECG signals is shown in

Fig. 10. In recordings designated as poor, the QRS complexes

were subtle, which would make the use of simple thresholding

techniques to detect the peaks unreliable. The average sensitivity



Fig. 8. Comparison of (a) the IAR algorithm (Allen et al., 2000), (b) FASTR algorithm and (c) data collected without FMRI. The superior quality of the FASTR

algorithm can clearly be seen. The close resemblance between the data cleaned with FASTR and the data collected without FMRI can be observed. As the

subject closed his eyes at 39.5 s for panels a and b, and at 10.5 s for panel c, the alpha rhythm appears in electrodes Pz, P4, O2, PO3 and PO4.
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achieved by the algorithm was 99.27% (T0.9%) and the average

specificity was 98.98% (T1.3%). In the worst case, the

algorithm achieved a sensitivity of 97.35% and a specificity

of 96.5%. In two data sets, the algorithm achieved 100% for

both specificity and sensitivity. It is evident that the algorithm,

combined with the correction procedure, is capable of detecting

QRS events quite accurately even for ECG recordings of poor

quality. This is a crucial result since subtraction-based methods
for BCG artifact removal are dependent on the accurate

detection of QRS events.

Ballistocardiographic artifact removal

A comparison between the performance of OBS and AAS

(Allen et al., 1998) is shown in Figs. 11–13. Fig. 11 plots the

amount of average BCG artifact residuals after cleaning the data



Fig. 9. Frequency spectrum comparison between EEG data cleaned of gradient artifacts using IAR (Allen et al., 2000) and the FASTR algorithm. The black

dotted trace shows the power spectrum of a typical EEG channel before cleaning any artifacts. The artifact can clearly be seen at 7, 14, 21, 28 and 35 Hz. The

solid black line is the same channel cleaned using the IAR algorithm plus adaptive noise cancellation using a binary reference. The dashed red line is the same

channel cleaned using the complete FASTR algorithm.
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with OBS and AAS. The height of each bar is the average

percentage of the original BCG artifact power remaining in

each channel. The results shown are the average over 8 data
Fig. 10. ECG recordings of different quality. The subjective ratings of poor, good a

the signal and on their height compared to other parts of the signal. It can be seen

dominated by the augmented Twave. On the other hand, in the excellent signal the

other features in the signal.
sets. On average, using OBS left 2.7% (T1.3%) residuals while

AAS left 4.0% (T4%) (P < 0.05 using a two-tailed paired t

test) of the original BCG artifact power. Fig. 12 compares the
nd excellent are given depending on how distinct the QRS complexes are in

that, for example, in poor signals the QRS is very subtle and the signal is

QRS complexes are very visible, distinct and their peaks are higher than any



Fig. 11. Plot illustrating the amount of BCG artifact residuals left by the AAS and OBS methods. The height of each bar is the percentage of the original BCG

artifact power for that channel that still remained as residuals after cleanup. The shown results are the average over 8 data sets. On average using OBS left 2.7%

(T1.3%) residuals while AAS left behind 4.0% (T4%) of the original BCG artifact power.
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BCG residual artifact energy computed from its power

harmonics after removing the artifact using the AAS and

OBS methods. The figure presents the data as percentage of the

original BCG artifact energy and are the average over 8 data

sets. On average, using OBS left 29% (T12%) of residual

energy while AAS left behind 35% (T15%) (P < 0.005 using a

two-tailed paired t test). Fig. 13 is a topographical plot

comparing the residuals left by both methods from a typical

data set. Again, it can be seen that the amplitude of the average

BCG residual is greater in virtually all channels when using

AAS compared to OBS.

Qualitatively, Fig. 14 shows EEG data before and after BCG

artifact subtraction for an eyes open/eyes closed experiment. The

preservation of the alpha rhythm can be seen in posterior EEG

channels, i.e., Pz, P4, O2, PO3 and PO4, when they occur at about

4.5 s as the subject closed his eyes.
Fig. 12. Plot illustrating the amount of BCG artifact residuals left by the AAS and

bar is the percentage of the original BCG artifact power sum over the first 10 ha

shown results are the average over 8 data sets. On average using OBS left 29%

artifact power.
Discussion

Simultaneous EEG and FMRI is a potentially powerful

technique in functional neuroimaging. Along with the potential

benefits, comes a series of challenges in implementing such a

technique. The main obstacles are artefacts from MRI gradients

and ballistocardiographic effects, as well as the need for practical

implementations of methods for their removal.

Removing gradient induced artifacts from simultaneously

collected EEG data using subtraction-based methods has been

shown to be effective before (Allen et al., 2000; Salek-Haddadi

et al., 2003; Bénar et al., 2003). These methods offer the most

practical solution as they do not require hardware modification

such as to synchronize the EEG and MRI system or alter the

imaging sequence (Anami et al., 2003). To date, however, these

methods require data to be collected at very high sampling
OBS methods at the harmonic frequencies of the artifact. The height of each

rmonics for that channel that still remained as residuals after cleanup. The

(T12%) residuals while AAS left behind 35% (T15%) of the original BCG



Fig. 13. A topographical plot showing the average BCG artifacts residuals

in the EEG of a typical subject using both AAS and OBS methods. In

comparison to the residuals left by AAS (blue), the residuals left by OBS

(red) are clearly smaller in amplitude in most channels.
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frequency in order to avoid serious residual artifacts. From our

experience, some commercially available subtraction-based

methods suffered from residuals even when the data were

sampled at as high as 10 kHz. At such sampling frequencies,

however, the practicality of running experiments is extremely

limited as the data size fast becomes very large, limiting the

duration of the experiment. We have developed an algorithm

which removes gradient artifacts and any residuals from data

sampled at only 2048 Hz, without the need to adjust any

hardware or imaging sequences. The algorithm has been

validated using a number of qualitative and quantitative

measures, including comparison the to the current standard

IAR method (Allen et al., 2000). It should be restated that the

implementation of IAR used was limited to the available

equipment, i.e., the interpolation scheme was not implemented

due to the absence of a high-resolution slice-timing signal,

resulting in severe residuals. This validation, however, was not

intended to assess the general performance of IAR, but rather to

compare it to FASTR given a generic, limited setup. Never-

theless, under the assumption that FASTR would produce results

similar to IAR after the slice-trigger alignment and average

artifact subtraction steps, we have demonstrated that ANC alone

would be unable to deal with the residuals on its own, granted

that the residuals were probably more severe given the used

sampling rate. In addition, the application of the algorithm to

simultaneously collected EEG and FMRI data in response to

nociceptive stimulation is described in a companion paper

(Iannetti et al., this issue). Because of the nature of EEG data

and lack of ‘‘ground truth’’ to assess the results against, it is

difficult to assess the quality of the EEG using a simple

measure. However, we believe that the overall pool of qualitative

and quantitative evidence shown provides a solid argument in

favor of the quality of EEG that can be achieved.

Although in its current form FASTR cannot be implemented

for online artifact removal, it could be modified to suit such a
purpose. In a single artifact subtraction step (as opposed to first

removing the average then performing PCA/OBS as was

described in the Methods section), PCA would be applied to

a moving window covering a fixed number of past segments

and an OBS calculated from the sample and fitted to the current

segment. Alternatively, the same OBS could be used repeatedly

and only recalculated when the artifact segments change

significantly due to head movement for example. However, this

approach could theoretically affect the accuracy of the OBS and

its ability to fully explain the artifact variance, as the number of

entries used to calculate the OBS is significantly reduced.

Negishi et al. (2004) have proposed an approach for the

removal of the gradient artifact similar to the one presented in

this paper with few notable differences. Both methods advocate

the use of slice-timing correction. In Negishi et al. (2004), after

the PCs have been calculated from the contaminated data, the

PC scores, their means and standard deviations are calculated

for the contaminated data and for data collected without FMRI

scanning. For each PC, the ratio of the standard deviation of the

PC score for the data without scanning to the standard deviation

of the PC score for the contaminated data is used to weight the

subtracted projection of the PC from the contaminated data.

This procedure has the obvious advantage of avoiding the

manual selection of the number of PCs to form an OBS.

However, the recording of additional data without scanning is

an extra requirement, which could potentially limit the

practicality of the experiment. Also, the method proposed by

Negishi et al. (2004) assumes that the EEG data collected

without scanning is similar in characteristics to the EEG data

collected during scanning; an assumption which will not be

perfectly correct and could lead to the removal of true EEG

information. On the other hand, our proposed approach lacks

automatic model order selection, i.e., we do not automatically

determined the number of PCs to constitute an OBS. This is a

potential area for future improvement. Theoretically, it should be

easy to include an automatic selection of the number of

components by setting a threshold for the amount of variance

to be explained, since the eigenvalue plot of the artifact

principal components is quite defined, i.e., there is a clear

cut-off for the number of components needed. We do not claim

that either our or Negishi’s approach is superior. Rather, we see

both works as complements that demonstrate the use of

temporal PCA in describing and removing residual gradient

artifacts and facilitate doing simultaneous EEG and FMRI

experiments using a relatively low sampling frequency.

Removing BCG artifacts using subtraction-based methods

has also been presented in the literature (Allen et al., 1998;

Goldman et al., 2000; Salek-Haddadi et al., 2003; Sijbers et al.,

2000). Our approach differs in that it attempts to capture the

variation of the artifact in time using the PCA/OBS approach.

This approach allows us to not assume the exact same repetition

of the artifact (Allen et al., 1998) or assume a simple rela-

tionship between occurrences as a function of temporal delay

between them (Goldman et al., 2000). It also does not assume a

simple scale/amplitude variation of the same basic shape.

Rather, the assumption is that over a long enough time, the

different BCG artifact occurrences in a single EEG channel are

a sample from a constant pool of possible occurrences. The

possible variations in this pool can then be explained by the

principal components of the samples. We have shown that, on

average, this approach decreases the residuals compared to a



Fig. 14. EEG quality (a) before and (b) after BCG artifact removal using OBS of EEG collected during an eyes opened/eyes closed experiment. The alpha

rhythms can clearly be seen in posterior channels starting at approximately 4.5 s when the subject closed his eyes.
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simple subtraction method by about 30%. Although the issue of

selecting the number of PCs in the OBS is also a concern here.

We have found that being conservative and fixing the number

of PCs to 3 works well in general. Although Negishi et al.

(2004) shed some light on the use of their approach to remove

BCG artifacts, they do not compare their results with current

approaches and state that more work is needed to fully apply

their methods to BCG artifact reduction.

As in any subtraction-based method for BCG artifacts,

however, a robust QRS detector is crucial. Implementing a simple

thresholding algorithm is not robust to detect QRS peaks as the

quality of ECG usually available in EEG systems is not predictable

inside the MRI scanner. This is mainly due to movement of

electrodes and augmentation of the T wave inside the scanner

(Allen et al., 1998; Goldman et al., 2000). We have shown the

application of a heuristic algorithm (Christov, 2004) for ECG

detection which achieves sensitivity and specificity that rival

algorithms applied to multi-lead ECG recordings conducted

outside the scanner.
Conclusion

Combining electroencephalography and functional MRI is

becoming increasingly important for neuroimaging research. This

work presents generic and practical methods to remove FMRI

environment-related artifacts from EEG data, which would

facilitate the application of this technique to a wide range of

settings and applications. Validation of the methods has been

provided in this work and in a companion paper (Iannetti et al., this

issue) which applied the algorithms described here to a study of

simultaneously recorded laser-evoked potentials and FMRI.
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