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Abstract

Clinical, neurophysiological, and neuroimaging studies have yielded controversial results about the representation of the face in the somato-
sensory cortex. To clarify this issue we mechanically stimulated the left forehead (ophthalmic trigeminal division, V1) and left lower lip
(mandibular trigeminal division, V3) in 14 healthy volunteers during acquisition of whole-brain fMRI images. During V1 and V3 stimulation the
fMRI signal in the primary (SI) and secondary (SII) somatosensory cortices in the contralateral hemisphere increased. Within both SI and SII, the
foci activated by stimulation of the two trigeminal divisions largely overlapped. In contrast, the ipsilateral representation differed. Whereas V3
stimulation activated the contralateral somatosensory cortex alone, V1 stimulation activated SI and SII bilaterally. These results to some extent
contrast with electrophysiological data in monkeys and disclose distinct cortical representations within facial territories in humans.
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Introduction

The cortical organization of the trigeminal somatosensory
system has been studied in man using different techniques, i.e.,
direct cortical stimulation (Penfield and Jasper, 1954), dipolar
analysis on magnetoencephalography (MEG) data (Karhu et
al., 1991; Mogilner et al., 1994; Nakamura et al., 1998; Maeda
et al., 1999; Suzuki et al., 2002), PET (Fox et al., 1987; Bittar
et al., 1999), and fMRI (Servos et al., 1999; Stippich et al.,
1999; Vincent et al., 2001). In the classical face representation
of the somatosensory homunculus originally described by Pen-
field and Boldrey (1937) the forehead regions lie in a superior
position and the lower lip regions in an inferior position along
the central sulcus, with the tongue and eyes represented bilat-
erally. Whether this organization is correct is still controversial.
Direct recordings from the somatosensory cortex in monkeys
(Kaas et al., 1979; Nelson et al., 1980; Manger et al., 1995,
1996), as well as clinical and imaging findings in man (Ram-
achandran et al., 1992; Ramachandran and Hirstein, 1998;
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Servos et al., 1999; Vincent et al., 2001), have shown that the
face representation within the primary somatosensory cor-
tex (SI) is much more complex than the one depicted in the
classical somatosensory homunculus. Few studies have spe-
cifically addressed the activation of the secondary somato-
sensory cortex (SII) or the bilaterality of facial representa-
tion in SI and SII.

In order to obtain physiological information about the so-
matotopic representation of the face in the somatosensory
cortices, we studied with functional MRI the contra- and ipsi-
lateral cerebral responses to repetitive tactile stimulation of the
forehead region (ophthalmic trigeminal division, V1) and
lower lip (mandibular trigeminal division, V3) in normal sub-
jects.

Methods
Subjects

Fourteen healthy volunteers (6 women, 8 men) aged
between 24 and 32 years (mean 26.1 years) participated in
the study. All subjects gave their informed consent and the
research was approved by the local Ethical Committee.
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Stimulation protocol

We stimulated the skin in two trigeminal divisions on the
left side of the face: the forehead region (V1) and the lower
lip (V3). We took care to ensure reproducibility of site,
frequency, and intensity of stimulation across runs and
subjects. V1 stimulation consisted of stroking up and down
at about 2 Hz the skin of the forehead with a cotton-tipped
swab within a longitudinal 3 X 2-cm area just above the
eyebrow. V3 stimulation consisted of a similar stroking of
the skin of the lower lip within a diagonally oriented 3 X
2-cm area. The medial border of these areas was kept 2 cm
lateral to the midline. The stimulation areas were drawn on
the subject’s skin with a felt pen. To minimize the variabil-
ity of the stimuli, these were always delivered by the same
experimenter, who had been specifically trained before.
Inside the scanner room the experimenter kept his hand
resting on the coil surface, holding a long cotton-tipped
swab that reached the skin through the coil. To avoid pas-
sive movements of the subject’s head this was restrained
with foam padding and straps. Immediately before the fMRI
acquisition session, a stimulation trial was performed and
subjects were asked to report whether the sensation was
clear and constant.

Subjects were instructed to remain relaxed with their
eyes closed and to keep their attention on the tactile stimuli.
During an open interview at the end of each run, subjects
described their perceived sensation, that was usually re-
ported as a gentle and clear stroking. One run was repeated
because the subject reported that stimulation was not con-
stant.

For each subject, during the same fMRI recording ses-
sion two distinct acquisition blocks (one run for each tri-
geminal division) were performed. Each run had a standard
block-designed configuration, consisting of multiple 15-s
periods of baseline (OFF) and stimulation (ON), in a boxcar
configuration, for a total of 7 OFF/ON epochs. The begin-
ning and end of stimulation periods were communicated to
the experimenter through the scanner earphones. The order
of the stimulated divisions was randomized and balanced
between subjects.

Imaging and data analysis

fMRI experiments were performed using a 1.5-T whole
body scanner (Philips Gyroscan). T2*-weighted echo planar
images (64 X 64 matrix, over a 240 mm field of view) were
acquired from 25 consecutive axial sections (slice thickness
4 mm, TR/TE = 3000/50 ms, flip angle 90°, and one single
excitation). During each run a total of 75 consecutive dy-
namics (3 s each) were acquired; the first 5 images of the
series were discarded. High-resolution 3D T1-weighted an-
atomical images (TR/TE = 30/4.6 ms, 256 X 256 matrix,
flip angle 30°) were acquired in the same orientation of the
functional images, producing 120 consecutive axial images
with a slice thickness of 1 mm.

We used SPM99 (http://www.fil.ion.ucl.ac.uk/spm) for
image processing and statistical analysis of the fMRI time
series data. All images were realigned to the first, corrected
for motion artifacts, normalized into the Montreal Neuro-
logical Institute (MNI) stereotactic space (Evans et al.,
1993) and smoothed with an 8-mm FWHM Gaussian ker-
nel. Motion parameters were checked for each subject, in
order to ascertain that they did not exceed 1 mm in trans-
lation and 1.5° in rotation. Activated voxels were identified
with the general linear model approach for time series data
(Friston et al., 1995), using a delayed boxcar model func-
tion. Data for each individual were then analyzed to detect
signal changes significantly related to cortical neural events
elicited by the trigeminal stimulation. A ¢ statistic was used
to determine significance on a voxel-by-voxel basis and the
data were transformed into a normal distribution (Z statis-
tic). Regions of significant condition-associated signal
changes were then displayed with a statistical threshold
based on the amplitude (P < 0.05, corrected for multiple
comparisons) and extent (80 mm?>) of the regions of activa-
tion (Friston et al., 1995). Within them, the location of the
most significant voxels was expressed with their coordinates
in the Talairach’s space (Talairach and Tournoux, 1988).

A second-level group analysis, threshold at P < 0.05
corrected for multiple comparisons and cluster volume >80
mm?®, was performed for each stimulated district using a
random-effect approach, in order to obtain information
about activations which could be consistent for the entire
group. On the basis of an a priori hypothesis, the signifi-
cance of activations was corrected for a brain volume in-
cluding the pre- and postcentral gyrus and the parietal oper-
culum of the two hemispheres, identified on high-resolution
T1 images.

To analyze the time course of BOLD signal intensity
changes within the somatosensory cortices, we a priori de-
fined four regions of interest (ROIs) on the anatomical
images of each subject; each ROI corresponded to one of
the four sites of significant activations revealed by the group
analysis, in the contralateral and ipsilateral ST and SII (see
Results). The mean normalized signal intensity of the vox-
els included in each ROI was calculated for each subject.

Furthermore, to separate the activations in the somato-
sensory cortex from those in the motor cortex, we defined
on the anatomical template two additional adjacent ROIs
bordering the central sulcus at the level of the face repre-
sentation, one in the postcentral gyrus (postCG) and one in
the precentral gyrus (preCG).

Results
Single-subject analysis
The data regarding the activations in individual subjects

are summarized in Table 1. Repetitive tactile stimulation of
V3 produced multiple activation sites in the postCG of the
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Table 1
Individual frequencies of activation in postcentral cortex during
trigeminal stimulation

Stimulated Number of Contralateral Ipsilateral
division subjects hemisphere hemisphere
V3 14 11/14 (79%) 5/14 (36%)
V1 14 12/14 (86%) 10/14 (71%)

contralateral hemisphere in 11/14 subjects (79%). In 6 sub-
jects the activation extended to the central sulcus, showing
a combined involvement of both postCG and preCG. The
ipsilateral hemisphere was activated in 5/14 subjects (36%),
and a combined activation of both ipsilateral postCG and
preCG was found in one subject.

V1 tactile stimulation produced multiple activation sites
in the postCG of the contralateral hemisphere in 12/14
subjects (86%). In 7 subjects the activation extended to the
central sulcus, showing a combined involvement of both
postCG and preCG. The ipsilateral hemisphere was acti-
vated in 10/14 subjects (71%), and a combined activation of
both ipsilateral PostCG and PreCG was detected in 5 sub-
jects.

Group analysis

The group analysis (P < 0.05, corrected for multiple
comparisons) revealed that both V3 and V1 stimulation led
to two distinct foci on the contralateral parietal lobe (Table
2). The first active cluster was located within the anterior
wall of the contralateral postcentral gyrus (postCG), near
the central sulcus (CS), likely corresponding to the Brod-
mann area (BA) 3b of SI (Geyer et al., 1999). The other
active cluster was located in the superior bank of the Syl-
vian fissure (BAs 40/43), corresponding to the contralateral
SII. The active clusters observed in SI and SII following V3
and V1 stimulation largely overlapped, and their centroids
almost coincided (Fig. 1, Table 2).

All the active clusters found in the contralateral hemi-
sphere after V1 stimulation were also found in roughly
symmetrical regions of the ipsilateral hemisphere (i.e., ip-
silateral postCG and superior bank of the Sylvian fissure)
(Fig. 2, Table 2). The analysis of the two ROIs drawn to
separate motor from somatosensory cortical activations re-
vealed that part of the “SI cluster” corresponded to the
preCG, for both V3 (contralateral hemisphere: 54%) and V1
stimulations (contralateral hemisphere: 58%, ipsilateral
hemisphere: 50%).

Fig. 3 shows how the signal time course differed in the
ipsilateral SI and SII voxels after V1 and V3 stimulation.

Discussion

Trigeminal tactile stimuli clearly activated the contralat-
eral SI and SII areas. The areas activated by lower lip and

forehead stimulations largely overlapped in both ST and SII.
The main difference between lower lip and forehead acti-
vations was that forehead stimuli yielded a symmetrical
activation of SI and SII in both hemispheres, whereas lower
lip stimuli produced a far higher activation in the contralat-
eral hemisphere.

Face somatotopy within the contralateral parietal cortex

We found overlap of V1 and V3 representations in SI.
This is in contrast with the classical somatosensory homun-
culus originally described by Penfield and colleagues (Pen-
field and Boldrey, 1937; Penfield and Rasmussen, 1950;
Penfield and Jasper, 1954), which had the lower lip closer to
the Sylvian fissure and the forehead more superior and
medial. As noted in the Introduction, however, there is
converging evidence that the face representation within SI is
quite more complex or even different than described in the
classical homunculus. For instance, microelectrode record-
ings in the monkey, that provide somatosensory maps with
a far higher spatial resolution than fMRI (e.g., less than 1
mm, Manger et al., 1996), showed that the cortical fields
responding to stimulation of different facial territories have
an irregular shape and lie intermingled (Manger et al.,
1995). If the same pattern holds true for the human cortex,
our tactile stimuli activated multiple neural clusters that
may well be sparse and intermingled within SI, thus result-
ing in the overlapping that we found in our fMRI study.

According to fMRI (Gelnar et al., 1998; Disbrow et al.,
2000; Ruben et al., 2001) and MEG (Hari et al., 1993; Mima
et al., 1997; Maeda et al., 1999) findings, SII appears to be
somatotopically organized, although less precisely than SI,
in humans. The present data confirm that, within SII, the
face representation is located lateral in the parietal opercu-
lum, toward the hemispheric surface.

Bilateral representation of forehead tactile input

An interesting result of this study was that V1 stimula-
tion yielded significant activations bilaterally, with the cor-

Table 2
Spatial location and extent of cortical clusters showing significant signal
changes during trigeminal stimulation

V3 stimulation V1 stimulation

Vol Z x y z Vol Z x y b4

Contralateral
hemisphere
Sensorimotor cortex 464 542 59 —14 32 648 581 58 —18 34
Parietal Operculum 344 5.40 61 —12 24 416 538 63 —16 23
Ipsilateral hemisphere
Sensorimotor cortex — — — — — 408 5.68 —57 —15 32
Parietal Operculum — — — — — 632 577 —69 —12 23

Volume (vol) of activations is expressed in mm?*; Talairach coordinates
(x, y, z) of peak foci of activation are expressed in mm.
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Fig. 1. Areas of significant activation in the contralateral hemisphere during tactile stimulation. Clusters activated by forehead stimulation are displayed in
red, those activated by lower-lip stimulation are displayed in green. The regions activated both by V1 and V3 stimulation are displayed in yellow. Note that
regions activated by V1 and V3 stimulations overlap both in SI and in SII.

tical fields corresponding to ipsilateral SI and SII roughly A bilateral activation of the human SII has been reported
symmetrical to the contralateral active clusters. In contrast, in several studies using different techniques. Direct surface
the activation induced by V3 stimulation did not reach recordings from the exposed cortex during surgery and
group statistical significance in the ipsilateral hemisphere. dipolar analysis on MEG data showed bilateral activation of

Forehead (V1) Lower lip (V3)
stimulation stimulation

Fig. 2. Axial sections through primary (SI) and secondary (SII) somatosensory cortices showing the results of group analysis (P < 0.05, corrected for multiple
comparisons). Tactile stimulation of both forehead (V1) and lower lip (V3) activated the contralateral SI and SII, but only the forehead stimulation yielded
significant activations in the ipsilateral SI and SII.
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Fig. 3. Time profile of mean signal intensity during trigeminal tactile
stimulation in contralateral and ipsilateral SI and SII. Each point represents
mean = SEM (n = 14). In the contralateral SI and SII the signal intensity
changes paralleled the stimulation paradigm during both V1 and V3 stim-
ulations. In the ipsilateral SI and SII the signal intensity changes paralleled
the stimulation paradigm during V1, but not during V3 stimulation.

SII after electrical stimulation of the hand (Allison et al.,
1989; Hari et al., 1993; Kany and Treede, 1997), although
the amplitudes of the responses were often higher on the
contralateral than the ipsilateral side and several subjects
had a contralateral activation only. Most PET and fMRI
studies yielded similar results, showing a predominant or
exclusive activation in the contralateral SII (Burton et al.,

1993; Coghill et al., 1994; Ledberg et al., 1995; Lin et al.,
1996; Burton et al., 1997; Maldjian et al., 1999; Francis et
al., 2000; Ruben et al., 2001). Even in fMRI studies de-
scribing an ipsilateral activation of SI after somatosensory
stimulation of one hand (Hansson and Brismar, 1999; Kor-
venoja et al., 1999; Spiegel et al., 1999) the number of
subjects having an ipsilateral SI activation was small, and
the intensity of the signal changes was lower than those in
the contralateral hemisphere (about 5 times lower in the
study by Hansson and Brismar, 1999).

None of the PET or fMRI studies in humans, however,
dealt with symmetry of facial cortical representations. One
fMRI study in macaque monkeys, using exactly our kind of
tactile stimulation of the lower lip, found that the activation
of SI and SII was exclusively contralateral (Hayashi et al.,
1999).

Microelectrode recordings from monkeys have shown
the presence of neural activity in SI during stimulation of
bilateral or ipsilateral receptive fields located in the midline
territories of the body (Manzoni et al., 1989; Taoka et al.,
1998). Iwamura and co-workers described, in awake mon-
keys, a number of SI neurons with bilateral receptive fields
in distal territories like the hand digits or feet (Iwamura et
al., 1994, 2002), and interpreted this bilateral activity as the
neural substrate for the coordination of those movements
that must be bilaterally coordinated. In the facial territory,
most investigators found a bilateral representation for the
intraoral region only (Mountcastle and Henneman, 1952;
Schwarz and Fredrickson, 1971; Manger et al., 1995, 1996).
These studies, however, were not specifically addressed to
investigate and could not solve the problem of a possible
bilateral representation of the forehead, because of the very
small sample of cortical neurons responding to forehead
stimulation.

During forehead stimulation we took care to remain
lateral enough to exclude the paramedian skin that could be
innervated by medial branches of the contralateral supraor-
bital nerve; indeed we stroked the skin in the same position
recommended for the unilateral activation of the supraor-
bital nerve in blink reflex studies, where a stimulus spread
to contralateral nerve branches is immediately disclosed by
the appearance of a contralateral R1 response (Kimura et al.,
1999; Cruccu and Deuschl, 2000). Hence our input was
conveyed through the ipsilateral trigeminal root to the brain-
stem and relayed to the ipsilateral trigeminal principal sen-
sory nucleus. Most of the trigemino-thalamic neurons cross
the midline and reach the ventro-posterior-medial nucleus
(VPM) in the contralateral thalamus; hence, somatosensory
information eventually reaches the contralateral parietal
cortex. Only neurons responding to intraoral stimuli have so
far been found in the ipsilateral VPM of lower mammals
and monkeys (Bombardieri et al., 1975; Jones et al., 1986).
It can therefore be hypothesized that a great deal of the
ipsilateral cortical activation is mediated by transcallosal
projections from the contralateral cortex.

Why the cortical somatosensory representation of the
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forehead is bilateral and that of the perioral skin mainly
contralateral is not easily explained. It is known that, in
humans, the cortical innervation for the upper facial mo-
toneurons is bilateral and that for the lower facial motoneu-
rons is contralateral, as suggested by the common clinical
features of the supranuclear palsy and demonstrated using
various techniques like direct stimulation of the exposed
motor cortex (Penfield and Rasmussen, 1950), anatomical
studies (Kuypers, 1958), and transcranial magnetic stimu-
lation of the cortico-facial projections (Cruccu et al., 1990;
Urban et al., 2001). In the cranial district, a predominantly
contralateral innervation is directed to those nuclei inner-
vating muscles that can be contracted unilaterally (e.g.,
jaw-closers and lower facial muscles), while bilateral pro-
jections from the cortex mostly reach the nuclei innervating
muscles that cannot be contracted unilaterally (e.g., jaw-
openers, laryngeal, palatal, and frontal muscles) (Kuypers,
1981; Cruccu et al., 1989). Hence the cortical organization
of the human sensory trigeminal system seems to parallel
that of the motor trigeminal and facial system. Because the
sensory input plays a key role in the control of voluntary
movements, the facial motor system may take advantage
from a similar organization in the sensorimotor cortex.
Similarly, the wider representation of the supraorbital ter-
ritory in the somatosensory cortex in humans than in mon-
keys may reflect the peculiar human ability to perform fine
and precise movements of the eyebrows contributing to
communication through facial expression.
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