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Objective: To develop an effective approach for enhancing the signal-to-noise ratio (SNR) and identifying
single-trial short-latency somatosensory evoked potentials (SEPs) from multi-channel electroencepha-
lography (EEG).

Methods: 128-channel SEPs elicited by electrical stimuli of the left posterior tibial nerve were recorded
from 11 healthy subjects. Probabilistic independent component analysis (PICA) was used as a spatial filter
to isolate SEP-related independent components (ICs), and wavelet filtering was used as a time-frequency
filter to further enhance the SNR of single-trial SEPs.

Results: SEP-related ICs, identified using PICA, showed typical patterns of cortical SEP complex (P39-
N50-P60) and scalp topography (centrally distributed with the spatial peak located near vertex). In addi-
tion, wavelet filtering significantly enhanced the SNR of single-trial SEPs (p = 0.001).

Conclusions: Combining PICA and wavelet filtering offers a space-time-frequency filter that can be used
to enhance the SNR of single-trial SEPs greatly, thus providing a reliable estimation of single-trial SEPs.
Significance: This method can be used to detect single-trial SEPs and other types of evoked potentials
(EPs) in various sensory modalities, thus facilitating the exploration of single-trial dynamics between
EPs, behavioural variables (e.g., intensity of perception), as well as abnormalities in intraoperative neuro-
physiological monitoring.

© 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Somatosensory evoked potentials (SEPs) are brain electrical re-
sponses following an applied somatosensory stimulus of a sensory
or mixed sensorimotor peripheral nerve (Mauguiere et al., 1999;
Nuwer et al,, 1994). SEPs are commonly used to examine the
functional integrity of somatosensory pathways, from the periphe-
ral sensory nerves to the sensory areas of the brain (Blum and
Rutkove, 2007). In clinical practice, SEPs have topodiagnostic
values, and can be used to identify the existence of a lesion in
the somatosensory pathways, to localize the lesion, thus providing
a prognostic guide (Cruccu et al., 2008; Kraft et al., 1998). In oper-
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ating theatres, SEPs can be used to monitor the function of somato-
sensory afferent pathways during surgery, thus preventing
possible surgical injury (Cruccu et al.,, 2008; Deletis and Shils,
2002; Hu et al,, 2001a).

As low-amplitude stimulus-evoked responses are embedded in
relatively high amount of electrical noise caused by background
ongoing EEG and other non-cortical artifacts, the SNR of SEPs is
very low, and across-trial averaging in the time domain (Dawson,
1951, 1954) using at least 500 trials is recommended to identify
and characterize short-latency SEPs (Cruccu et al., 2008). The
obtained SEP waveform takes the form of a cortical complex (i.e.,
P39-N45-P60 for tibial-nerve SEPs, Cruccu et al., 2008; Mauguiere
et al.,, 1999) relative to the onset of the sensory event. The basic
assumption underlying this procedure is that evoked potentials
(EPs) are stationary (i.e., their latency and morphology are invari-
ant) and is therefore unaffected by the averaging procedure (Hu
et al., 2010). In contrast, ongoing EEG activity behaves as noise
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unrelated to the event, and will therefore be largely cancelled out
by averaging a large number of trials (Mouraux and I[annetti, 2008).
However, SEPs are comprised of multiple waves (Cruccu et al.,
2008; Mauguiere et al., 1999) whose latency and amplitude can
independently vary from trial to trial (Spencer, 2005). Consequently,
the across-trial averaging approach has the drawback that all the
information concerning across-trial variability of SEPs is lost. Thus,
across-trial averaging can heavily bias the representation of cortical
activity elicited by a somatosensory stimulus, as across-trial vari-
ability often contains physiological information, for example, re-
lated to changes in stimulus parameters (duration, intensity, and
rate) and fluctuations in surgical variables (blood pressure and
temperature) (Mouraux and lannetti, 2008; Wiedemayer et al.,
2002). For this reason, the ability to obtain a reliable single-trial
estimation of SEPs is highly desirable, as it would facilitate the
exploration of single-trial dynamics between SEP measures, behav-
ioural variables (e.g., intensity of perception, reaction time) (Ian-
netti et al, 2005), as well as abnormalities in intraoperative
neurophysiological monitoring (e.g., SEPs in intraoperative spinal
cord monitoring) (Hu et al., 2001b; Luk et al., 1999, 2001; Minahan,
2002; Nuwer, 1998).

The main challenge to obtain a reliable estimation of the single-
trial SEP responses is how to enhance their SNR effectively and reli-
ably. Several methods have been recently developed for accurately
estimating the latency and amplitude of single-trial event-related
potentials (ERPs). Second-order blind identification (SOBI) (Tang
et al., 2005) and independent component analysis (ICA) (Jung
et al., 2001) were adopted to detect the signal-trial ERPs, and the
results showed that stimulus-related independent components
(ICs) can be effectively separated from multi-channel EEG record-
ings, and SNR can be considerably increased in single trials. In
addition, Mayhew et al. (2006) used a multiple linear regression
method to estimate the latency and amplitude of laser evoked
potentials (LEPs). Hu et al. (2010) further combined wavelet filter-
ing and the multiple linear regression method to enhance the SNR,
thus achieving robust single-trial estimate of even smaller ERP
components (e.g., the N1 wave of LEPs). Britton et al. (2000) pro-
posed to use the time sequence adaptive filtering and adaptive
multi-resolution analysis for extracting single-trial ERPs. Mouraux
and Plaghki (2004) employed a time-frequency analysis (TFA)
using the wavelet transform to enhance SNR and disclose single-
trial LEPs. Nishida et al. (1993) used three kinds of band-pass filters
to detect the single SEP waveform, and Rossi et al. (2007) adopted
an autoregressive filter with exogenous input on single-trial SEP
extraction.

Among these methods, spatial-temporal filtering based on
blind source separation (BSS) methods (e.g., ICA and SOBI) (Bing-
ham and Hyvarinen, 2000; Hyvarinen, 1999; Hyvarinen and Oja,
2000; Jung et al., 2001; Makeig et al., 1997) has been demonstrated
to be effective in isolating stimulus-related responses from multi-
channel EEG recordings. In addition, time-frequency filtering
(based on time-frequency decomposition methods such as win-
dowed Fourier transform or wavelet transform) (Jongsma et al.,
2006; Mouraux and Plaghki, 2004; Quiroga, 2000; Quiroga and
Garcia, 2003) can be used to isolate stimulus-related, phase-locked
responses from background EEG and non-cerebral artifacts. How-
ever, the combination of these two kinds of methods, which offers
space-time-frequency filtering, has never been reported for sin-
gle-trial SEP extraction.

This paper is the first attempt to develop a space-time-fre-
quency filtering method that combines probabilistic ICA (PICA)-
based spatial filtering with wavelet-based time-frequency filtering
in order to enhance the SNR of SEPs in single trials. The PICA (Beck-
mann, 2004; Beckmann and Smith, 2004; Liang et al., 2010; Mou-
raux and Iannetti, 2009) method is used as a spatial filter to
identify SEP-related ICs from multi-channel EEG recordings. As it

is not convenient to record SEPs using 128 channels in both clinical
applications and intraoperative monitoring, fewer-channel mon-
tages are more preferable. For this reason, the performances of
SEPs at peak channel, which captures the highest SEP power, when
using montages with fewer (64, 32, 16, and 8) channels have been
evaluated to provide a recommended montage with quantitative
evidence. Using the recommended montage, single-trial SEP detec-
tion can be achieved using the proposed method quickly and reli-
ably. Furthermore, the peak channel was selected for subsequent
time-frequency filtering based on continuous wavelet transform
(CWT) (Mouraux and Plaghki, 2004; Tognola et al., 1998). The
SNR of SEP responses before and after wavelet filtering is compared
to illustrate the effectiveness of the proposed method. Finally, rep-
resentative amplitudes from filtered SEP recordings and filtered
resting EEG using the proposed method are compared to assess
the validity of the space-time-frequency filtering method.

2. Methods
2.1. Data acquisition and preprocessing

Eleven young healthy volunteers (nine males and two females)
participated in this study, with mean age of 27.4 + 3.5 years (range
23-35 years). All participants gave written informed consent, and
the local ethics committee approved the experimental procedures.

Subjects were seated in a quiet and comfortable room, and were
instructed to relax, keep their eyes open and focus their attention
on the stimuli. During the experimental sessions, repetitive electri-
cal stimulation (1.1 Hz) was administered transcutaneously to the
posterior tibial nerve (PTN), at the left ankle. The stimuli consisted
in constant current square wave pulses (duration 0.1 ms), with
intensity set just above the motor threshold, i.e., the intensity at
which a clear muscle twitch in the abductor hallucis was observed.
The average stimulus intensity was 21 +2 mA (range 18-25 mA).
For each subject, about 330 stimuli, which lasted for 5 min in total,
were delivered.

SEPs were recorded by a 128-channel NeuroScan System (pass
band: 0.05-200 Hz, sampling rate: 1000 Hz), using a standard
EEG cap based on the extended International 10-20 system, using
Cz as reference channel. Channel impedances were kept lower than
10 kQ. The locations of EEG channels were recorded with a 3D dig-
itizer (Polhemus, Colchester, VT, USA). To monitor ocular move-
ments and eye blinks, electro-oculographic (EOG) signals were
simultaneously recorded from two surface channels, one placed
over the lower eyelid, the other placed 1 cm lateral to the outer
corner of the orbit. Continuous EEG data were band-pass filtered
between 1 and 100 Hz. SEP trials were extracted using a window
analysis time of 300ms (100 ms pre-stimulus and 200 ms
post-stimulus) and baseline corrected using the pre-stimulus time
interval. Trials with large eye movements and muscle artefacts
(exceeding 100 pV) were rejected automatically. After baseline
correction and artefact rejection, 326 +3 trials were used for
further SEP single-trial detection, and these SEP data were re-
referenced to a common average reference.

2.2. Data processing

The procedures for single-trial detection of SEPs were summa-
rized in Fig. 1, consisting of two consecutive steps: PICA-based spa-
tial filtering and wavelet-based time-frequency filtering.

2.2.1. Probabilistic independent component analysis (PICA)

PICA was performed to separate EEG data into spatially-fixed
and temporally-independent non-Gaussian sources and an addi-
tive Gaussian noise, which is actually a combination of probabilis-
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Fig. 1. Flowchart describing single-trial detection of short-latency SEPs. Left panel: spatial filtering combined PPCA and Infomax ICA into PICA, and then used a joint SIM and
REP criteria to isolate and separate SEP-related ICs. Right panel: time-frequency filtering based on CWT was imposed on single-trial SEPs at peak channel to further enhance

their SNR.

tic principal component analysis (PPCA) (Beckmann and Smith,
2004; Minka, 2001; Tipping and Bishop, 1999a,b) and an informa-
tion maximization algorithm (Infomax ICA) (Bell and Sejnowski,
1995; Delorme and Makeig, 2004). In theory, PPCA was used to
decompose an EEG signal into a specified number of principal com-
ponents (PCs) and a Gaussian noise residual. The subspace of the
PCs was then orthogonalized by Infomax ICA (Bell and Sejnowski,
1995) to obtain the temporally-independent ICs.

Firstly, PPCA decomposed the EEG data into a lower dimen-
sional source subspace and a noise subspace using maximum-
likelihood density estimation (Tipping and Bishop, 1999b). The
PPCA model can be characterized by defining a high-dimensional
vector of observations as a linear combination of low-dimensional
PCs plus an additive Gaussian noise:

X=Ay+p+n (1)

where X represents a d-dimensional vector of multi-channel EEG
data, y denotes a k-dimensional (k < d) vector of PCs with distribu-
tiony ~ .47(0,Ix), p is the mean of x, A denotes the mixing matrix,
and n is Gaussian noise with distribution n ~ .47(0, 62I;). The in-
verse of the mixing matrix A gives the unmixing matrix W,, which
will be used for validity test, as described in Section 2.2.4. With this
model, the distribution of observed data x is:

X~ A (0, AA" + 6%y) (2)

Based on the maximum-likelihood density estimation (Minka,
2001; Tipping and Bishop, 1999a,b), we have

P = D% 3)

A = U(A — 0°I) 'R (5)
L)

Oy = 2 (6)
d—k farrd)

where the column orthogonal matrix U, contains the top k eigen-
vectors of S, A, is the diagonal matrix containing the top k eigen-
values of §, J; is the (jj)th entry of A4, and R is an orthogonal
matrix, which is generally taken as R=1 A more complicated
expectation-maximization (EM) algorithm (Roweis, 1998) can also
be used for an efficient calculation of R.

Here, the number of sources that determine the valid subspace
should be accurately estimated prior to the PC estimation. An
effective method, initially developed by Beckmann and Smith
(2004) for the analysis of fMRI data and also used by Mouraux
and lannetti (2009) and Liang et al. (2010) in EEG studies, is
adopted in this study to estimate the number of sources and to
identify/isolate SEP-related ICs contained in the multi-channel
EEG. The basic idea underlying this method is to combine a Laplace
approximation with the predicted cumulative distribution, and to
adjust the eigenspectrum (to give an adjusted Laplace approxima-
tion) (Beckmann and Smith, 2004). For more details, please refer to
Beckmann and Smith (2004).

Once PCs have been identified by PPCA, multidimensional
orthogonal vectors were transformed into ICs with maximal statis-
tical independence from each other. In this study, the orthogonal
procedure was performed on the obtained PCs using Infomax ICA
(Bell and Sejnowski, 1995; Delorme and Makeig, 2004). Conse-
quently, ICs (with the same dimension as the PCs) and the corre-
sponding orthogonalizing matrix W; were obtained for each
subject.

To identify SEP-related ICs from all the obtained ICs (i.e., to dis-
tinguish SEP-related ICs from noise-related ICs), two measures,
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namely the similarity index (SIM) and the relative power (REP),
were used to classify ICs. The SIM estimates the similarity of re-
sponses between single trials and their average, while the REP esti-
mates the power increase after the presentation of the stimuli
compared to the pre-stimulus interval on the averaged waveform.

The SIM of each IC within the post-stimulus interval (0-100 ms)
is calculated as

. )
SiM — ‘TXG—)Z(GN 7)
S 2
0y =H=tD ®)
X - 2
43~ D0 5t o

where 6% is the power of ICs and 6% is the power of noise (esti-
mated as x; — X), x;(t) is the single-trial waveform of a SEP-related
IC(j=1,...,J is the trial number and t =1,...,T is the time point
after stimulus), and X is the average across all single trials (Tang
et al., 2005). SEP-related ICs often possess a higher SIM than non-
stimulus-locked ICs and noise-related ICs.

The REP is obtained as the ratio between the mean post-stimu-
lus power and the mean pre-stimulus power on the averaged SEPs
for each subject (Mouraux and Iannetti, 2009). SEP-related ICs,
which correspond to the stimulus-evoked responses, often capture
an increase of power after the sensory stimulus. Thus, SEP-related
ICs have higher REP values than noise-related ICs.

A joint criteria of both SIM (SIM > 70% x (max(SIM)—
min(SIM)) + min(SIM)) and REP (REP > 4) were adopted in this
study. The ICs satisfying both criteria were classified as SEP-related
ICs, while others were classified as noise-related ICs. It is necessary
to highlight that the obtained classification was not critically
dependent on the arbitrary selected threshold of SIM =70% and
REP =4. Indeed, lower threshold values, like SIM=50% and
REP = 2, would recruit several small-weighted ICs (i.e., those that
explained a small portion of the total variance of the data), but they
would not result in much difference of SEP responses at peak chan-
nel from those obtained using more stringent threshold values.

Waveform shapes, peak topographies and dipole sources, i.e.,
the response features typically used to recognize ICs (Britton
et al., 2000; Tang et al., 2005), were used to verify the accuracy

Waveform

Ampliude (V)

L L s
-50 [} 50 100 150

Time (ms)

Scalp topography

of the proposed criteria (Fig. 2). Here, the source locations of
SEP-related ICs were modeled by fitting a single equivalent dipole
or two symmetrical equivalent dipoles for each IC. Dipole fitting
was performed using dipfit2 algorithm with a standardized bound-
ary element head model in EEGLAB (Delorme and Makeig, 2004).
Dipole locations outside the head, and dipole models with a resid-
ual variance (RV) exceeding 20% were excluded.

The optimal number of dipoles was determined by the follow-
ing procedures.

(1) To calculate the RV for both models (a single dipole model
and two symmetrical dipoles model), each SEP-related IC
was modeled by fitting a single dipole and by fitting two
symmetrical equivalent dipoles consecutively.

As we known, the model with more parameters (two symmet-
rical dipoles) would always fit the data at least as well as the model
with fewer parameters (a single dipole). Therefore, the complicate
model would give a better fit to the data (the scalp distribution of
each IC) than the simple model. However, the model with more
parameters would fit more noise than that of the model with fewer
parameters (i.e., over-fitting).

(2) To select the optimal dipole model and to avoid possible
problems of under-fitting or over-fitting, the Bayesian infor-
mation criterion (BIC, or Schwarz criterion) (Schwarz, 1978)
was adopted. This BIC criterion was proved to be able to pro-
vide a more accurate estimation of the number of dipole
sources for the 128-channel montage regardless of the noise
level than several other model estimation approaches (e.g.,
Akaike’s criterion and Hannan-Quinn information criterion)
(Bai and He, 2005, 2006), and it can be expressed as

BIC, = mlog(E2) + DF, log(m) (10)

where BIC is the estimated Bayesian information criterion value, n is
the number of dipoles (1 or 2 in this study), m is the number of
channels, log(e) is the natural logarithm, E2 is the error function
(RV in this study), and DF is the number of parameters for describ-
ing n dipoles (six for a single dipole and nine for two symmetrical
dipoles). The dipole model with minimum BIC, is supported as
the optimal model, and n is the optimal dipole number, which
was used for further dipole fitting analysis.

Dipole sources

SEP-related ICs

Fig. 2. Waveform, scalp topography and dipole sources of SEP-related ICs. Left panel: representative waveform of SEP-related ICs showing a typical “W” shape between 30 and
120 ms following the presentation of electrical stimuli. Note that the positive deflection appearing at about 5 ms after the onset of the stimulus is the artifact generated by
electrical stimulation. Middle panel: representative scalp topography of SEP-related ICs which is centrally distributed with the peak located near vertex. Note that similar scalp
topographies were obtained from all subjects. Right panel: source locations of SEP-related ICs were modeled by fitting a single dipole or two symmetrical equivalent dipoles
for each SEP-related IC. The locations of the fitted dipoles were classified to form three clusters: a bilateral cluster was located in the left and right operculo-insular regions
(x =26 mm, y = 0.4 mm, z = 36 mm). While, the deep midline cluster (existing in 6 of 11 subjects) was located in cingulate cortex (x =+0.2 mm, y = —10 mm, z = 18 mm), the
superficial midline cluster (existing in 10 of 11 subjects) was mainly located in the primary somatosensory cortex (x =+3.2 mm, y = —10 mm, z = 55 mm). The smaller spheres
represented the dipole locations of each single SEP-related IC, and the larger sphere showed the center of gravity of each cluster (bilateral cluster, deep midline cluster, and
superficial midline cluster are shown in red, blue, and green, respectively). (For interpretation of the references in colour in this figure legend, the reader is referred to the web

version of this article.)
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After the removal of noise-related ICs, the channel displaying
the largest SEP responses was identified based on the post-stimu-
lus power. The single-trial responses at this channel (hereinafter
referred to as the peak channel) were selected for further time-
frequency filtering. The peak channel (represented as one channel)
was selected because the short-latency SEPs were believed to be
generated from primary somatosensory cortex (SI) in the postcen-
tral gyrus (both Brodmann areas 3b and 1) (Baumgartner et al.,
1998; Cruccu et al, 2008). Similarly, van de Wassenberg
et al. (2008a,b) showed that the scalp topographies of typical
short-latency SEPs are similar with each other (N20-P27-P45 for
median nerve SEPs [Fig. 2 in their publication], P39-N50-P60 for
tibial-nerve SEPs [Fig. 1 in their publication]). Indeed, different
channels should be used when measuring both short-latency and
long-latency SEP responses, because the short-latency and
long-latency SEP responses were generated from spatially distinct
sources (their distance is much larger than that between
Brodmann areas 3b and 1).

In order to show the filter effect of spatial filtering using PICA,
we estimated the SNR of single-trial SEPs (both single channel
and the mean across all channels) before and after spatial filtering
as (Tang et al., 2005):
0% — Oy

SNR = =X
o

(11)

where 6% is the power of single-trial SEP waveform and 6% is the
power of noise (estimated as the difference between single-trial
SEP waveform and the average across all trials). The SNRs before
and after spatial filtering were compared using two tailed Wilcoxon
Signed Ranks test.

2.2.2. Performance of fewer-channel montages

After PICA, the SNR and power of spatial filtered SEP responses
(at the peak channel and averaged across all channels) in the post-
stimulus interval were calculated from 64, 32, 16, and 8-channel
montages (according to the International 10-20 system), and they
were further compared with the SNR and power values calculated
for the original 128-channel montage. To test the differences be-
tween these montages, the non-parametric Friedman’'s ANOVA
was used, as the SNR and power values were not normally distrib-
uted (Debener et al., 2007; Hu et al., 2010; Spencer, 2005). When
differences were significant, we performed a post hoc analysis
using the Wilcoxon Signed Ranks test.

2.2.3. Time-frequency filtering

The continuous wavelet transform (CWT) based time-
frequency filtering was performed by means of the following three
steps. First, single-trial SEP waveforms were decomposed into a
time-frequency representation using CWT. Second, specific areas
on the time-frequency plane corresponding to the SEP responses
were identified and used to generate the wavelet filtering model.
Third, time-domain SEP waveforms were reconstructed from
the filtered time-frequency representation using inverse CWT
(ICWT).

The time-frequency representation of each single SEP trial was
calculated using the CWT, which is defined as (Tognola et al.,
1998):

WT(.f) 2/[X(t)'\/f/O'lV(f/fO'(t*T))dt (12)
Y(t) = ——=emihte (13)

vy

where 7 and f are the time and frequency index, respectively; x(t) is
the original signal in the time (t) domain; y(t) is the mother wavelet

function with center frequency fo and bandwidth f,. The mother
wavelet y(t) used in this paper is a complex Morlet wavelet (Eq.
13). The bandwidth parameter f, was set to 0.05, and the wavelet
center frequency f, was set to 6. The squared magnitude of
WT(z,f), called the scalogram, showed a good time-frequency res-
olution with explored frequencies ranging from 1 to 100 Hz in steps
of 1 Hz.

For each estimated frequency, the magnitude of the power
spectrum was baseline-corrected (i.e., normalized) by subtracting
the average power of the signal enclosed in the time-interval be-
tween —50 and 0 ms (lannetti et al., 2008; Pfurtscheller and Lopes
da Silva, 1999). The group level time-frequency representation
WTra Was obtained by averaging the normalized WT from all
subjects. The obtained time-frequency matrix was then threshol-
ded with the objective of keeping wavelet coefficients with high
power and eliminating wavelet coefficients with low power. In or-
der to apply time-frequency filtering to enhance the SNR of the
short-latency SEPs at single-trial level, a binary time-frequency
template (W;) was generated. The template Wy was obtained by
creating a matrix whose time-frequency pixels were set to 1 when
the power of the corresponding wavelet coefficient was greater
than the threshold, and set to 0 when the power was smaller
than the threshold. The threshold parameter is defined as 0.9x
(Pmax — Pmin) + Pmin Where Pp.x is the maximum power of the
wavelet coefficients and P, is the minimum power. The time-
frequency template identifies the distribution of EEG changes
induced by the somatosensory stimulus in the time-frequency
domain, and is used to filter out the contribution of non-
stimulus-related background.

For each single trial SEPs, time-frequency filtering was achieved
by multiplying the time frequency representation of the single trial
i, WT;, with the binary weighting matrix Wy as

FWTi(t,f) = Wy - WTi(z,f) (14)

where FWT; is the filtered time frequency representation.
The filtered single-trial signal y;(t) was finally reconstructed in
the time domain from FWT;(z,f), using ICWT (Tognola et al., 1998):

it =G, / /f FWTi(2.f) - [F ffo - w(f folt — D) - (F/fo)?
“dt-df (15)

where C, = f5°[|¥’(f)\2/f]df is a constant that depends on ¥(f), the
Fourier transform of y(t).

To evaluate the effect of the described wavelet filtering, we cal-
culated the SNR of single-trial SEPs before and after time-fre-
quency filtering using Eq. (11). The obtained SNRs before and
after wavelet filtering were compared using two tailed Wilcoxon
Signed Ranks test.

2.2.4. Validity test using ongoing EEG

In order to test whether the described method introduces any
bias (i.e., the spurious result of aligning and filtering of ongoing
EEG oscillations (Quiroga and Garcia, 2003)) in the analysis, we
performed the same procedures on resting EEG signals, which were
recorded from all subjects for this validation. For each subject, the
unmixing matrix W), the orthogonalizing matrix W; from PICA and
the time-frequency model Wy from the wavelet filtering (Fig. 1),
which were all calculated from the SEP data, were applied to 100
trials of resting EEG. The performance of the described method
on these 100 trials of resting EEG was compared with its perfor-
mance on 100 SEP trials (the first 100 trials). The amplitude values
obtained from the analysis of the resting EEG data were compared
against zero using a one sample t test.
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3. Results
3.1. SEP-related ICs

When applied to the 128-channel SEP recordings, a number of
spatially-fixed and temporally-independent ICs were identified
using PICA. These ICs were likely to represent both physiologi-
cally-independent neural activities and non-neural activities. The
estimated number of ICs was, across subjects, 32 + 13 (range 14-
54) and accounted for 98.2 £ 1.3% of the total variance of the SEP
data. The number of SEP-related ICs, identified by the joint SIM
and REP criteria, was 2+ 1 (range 1-5) across subjects. These
SEP-related ICs contributed to 62.1 £ 22.6% of the variance of the
averaged SEP responses.

These identified SEP-related ICs were often characterized with:
(1) aregular shape in the post-stimulus interval (30-120 ms) of the

SEP responses

Sorted frials

|

Amplitude (pV)

Time (ms)

Sorted trials
Amplitude (pV)

across-trial averaged waveform (Fig. 2, left panel); (2) a centrally
distributed scalp topography with the peak located near vertex
channel (Cz) (Fig. 2, middle panel).

Based on the BIC criterion, the single dipole model was adopted
for 6 (out of 25 in total) SEP-related ICs, and the two symmetrical
dipoles model was adopted for 19 (out of 25 in total) SEP-related
ICs. For each subject, 2.4 + 1.4 SEP-related ICs were successfully
modeled (residual variance: 5.4 +4.9%). The obtained dipoles
were further classified into three clusters as follows (Fig. 2, right
panel):

(1) Dipoles, of which the absolute x values were larger than
20 mm, were classified as a bilateral cluster (x < —20 mm
or x > 20 mm, Montreal Neurological Institute coordinates).

(2) Dipoles, of which the absolute x values were less than
20 mm and the z-axis values were less than 30 mm, were
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Fig. 3. The effect of space-time-frequency filtering on single-trial SEPs and resting EEG. Top panel: single-trial SEP responses and resting EEG were shown in the left and right
of top panel, respectively (smoothing = 3). Middle panel: single-trial SEP responses and resting EEG, which have been spatially filtered, were shown in the left and right of
middle panel, respectively. Note that the variation of single-trial resting EEG was markedly reduced, while single-trial SEP responses were more clearly presented. Bottom
panel: single-trial SEP responses and resting EEG, which have been further time-frequency filtered, were displayed in the left and right of bottom panel, respectively. Results
indicated that phase-locked responses of short latency SEPs were preserved with remarkably high SNR while resting EEG was almost identical to zero across all points along

the time course.
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classified as a deep midline cluster (—20 mm < x < 20 mm
and z <30 mm).

(3) Dipoles, of which the absolute x values were less than
20 mm and the z-axis values were larger than 30 mm, were
classified as a superficial midline cluster (—20 mm <x <
20 mm and z > 30 mm).

The dipole locations in each cluster were averaged for the left
and right hemispheres, respectively (Fig. 2, right panel). The bilat-
eral cluster (existing in 3 of 11 subjects) was located in the left
and right operculo-insular regions (x=126 mm, y=0.4 mm,
z=36 mm). While, the deep midline cluster (existing in 6 of 11
subjects) was located in cingulate cortex (x=+0.2 mm,
y=-10mm, z=18 mm), the superficial midline cluster (existing
in 10 of 11 subjects) was mainly located in the primary somatosen-
sory cortex (x =+3.2 mm, y = —10 mm, z =55 mm).

After removing noise-related ICs based on the joint SIM and REP
criteria, single-trial SEP responses at the peak channel were more
clearly presented (Fig. 3, top and middle panels).

When evaluating on the peak channel, spatial filtering en-
hanced (but not significantly) the SNR of single-trial SEP responses
(SNR before spatial filtering: 0.031 + 0.023; after spatial filtering:
0.046 £0.027, 1.86 +1.33 times enhanced, p =0.062, two tailed
Wilcoxon Signed Ranks test). When evaluating on all channels;
spatial filtering significantly enhanced the SNR of single-trial SEP
responses (SNR before spatial filtering: 0.005 * 0.002; after spatial
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filtering: 0.023 + 0.017, 5.41 £+ 4.04 times enhanced, p = 0.008, two
tailed Wilcoxon Signed Ranks test).

The difference (between the significant improvement of the
estimated SNR when considering all channels and the less
improvement when considering only the peak channel) may be
caused by the reason that spatial filtering using PICA is able to
identify and remove some noise (e.g., artifacts related to the activ-
ity of temoralis muscle and artifacts related to eye blink and move-
ment), which may or may not contaminate the signal recorded at
the peak channel (near Cz). If these artifacts were small in magni-
tude and did not affect the peak-channel signal, the removal of
these noise-related ICs could not improve the SNR at the peak
channel significantly, but can improve the SNR across all channels.
If these artifacts were large in magnitude and affected the peak-
channel signal greatly, the removal of these noise-related ICs could
help improve the SNR of both single channel and all channels.

3.2. Performance of fewer-channel montages

Similarly, when considering the peak channel, PICA cannot sig-
nificantly improve the SNR in most cases (64-channel: p = 0.003;
32-channel: p=0.965; 16-channel: p=0.541; 8-channel:
p = 0.657). However, when considering all recording channels, PICA
significantly improved the SNR for all montages (64-channel:
p=0.013; 32-channel: p = 0.003; 16-channel: p = 0.003; 8-channel:
p =0.003).
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Fig. 4. Group average scalp topographies of SNR and power, and peak channel SNR and power measured from different montages. Top left panel: the group-average scalp
topography of SNR, which displayed a higher SNR distribution around central region (Cz) and contralateral temporal region (T4). Top right panel: the group-average scalp
topography of power, which displayed a very clear central distribution of the power (maximal around Cz). Bottom left panel: peak channel SNR measured from 128, 64, 32, 16,
and 8-channel montages were compared across subjects. Bottom right panel: peak channel power measured from 128, 64, 32, 16, and 8-channel montages were compared
across subjects. Horizontal black lines show the median values, while down and up borderline lines of the color box indicate the lower quartile, and upper quartile values.
Asterisk * indicates a significant difference between values obtained from 128-channel and those from fewer channel montages. (For interpretation of the references in colour

in this figure legend, the reader is referred to the web version of this article.)
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Table 1
SNR measured at peak channel when using 128, 64, 32, 16, and 8-channel montages
across all subjects.

Table 2
Power measured at peak channel when using 128, 64, 32, 16, and 8-channel montages
across all subjects.

Subjects 128- 64- 32- 16- 8- Subjects 128- 64- 32- 16- 8-
channel channel channel channel channel channel channel channel channel channel
#1 0.0243 0.0252 0.0252 0.0248 0.0249 #1 0.6091 0.7086 0.6275 0.7402 0.5907
#2 0.0126 0.0159 0.0141 0.0104 0.0123 #2 0.1335 0.0962 0.133 0.241 0.1842
#3 0.0294 0.0364 0.0343 0.0196 0.0182 #3 0.4016 0.5512 0.4771 0.3257 0.1905
#4 0.0466 0.0523 0.0436 0.0266 0.0276 #4 0.6744 0.6079 0.5772 0.4142 0.442
#5 0.0437 0.0192 0.0297 0.0099 0.0133 #5 0.4983 0.1841 0.2354 0.3327 0.3681
#6 0.1263 0.0901 0.0972 0.0842 0.085 #6 2.6644 2.0707 2.7855 3.4721 2.2792
#7 0.0236 0.0171 0.0138 0.0179 0.0118 #7 0.2844 0.1856 0.112 0.1641 0.0947
#8 0.0465 0.0491 0.0366 0.0446 0.0232 #8 0.5477 0.6031 0.4001 0.5968 0.2838
#9 0.0671 0.0773 0.1001 0.0841 0.0369 #9 0.5922 0.7848 0.9963 1.0206 0.3665
#10 0.0902 0.0833 0.0736 0.0593 0.0482 #10 0.5984 0.7933 0.8343 0.8917 0.1884
#11 0.1045 0.1126 0.1004 0.0798 0.0369 #11 0.6948 0.7671 0.8544 1.0257 0.4583
Median 0.0465 0.0491 0.0366 0.0266 0.0249 Median 0.5922 0.6079 0.5772 0.5968 0.3665
Lower 0.02685 0.0222 0.02745 0.01875 0.01575 Lower 0.44995 0.3684 0.31775 0.3292 0.18945
quartile quartile
Upper 0.07865 0.0803 0.0854 0.06955 0.0369 Upper 0.64175 0.77595 0.84435 0.95615 0.45015
quartile quartile

The top left graph in Fig. 4 showed the group-average scalp
topography of SNR, which displayed a higher SNR distribution
around the central region (Cz) and the contralateral temporal re-
gion (T4). The top right graph in Fig. 4 showed the group average
scalp topography of power, which displayed a very clear central
distribution of the power (maximal around Cz). Both scalp topog-
raphies of the SNR and power indicated that short-latency SEPs
were mainly generated from the SI.

There was a significant difference in peak channel SNR among
128, 64, 32, 16, 8-channel montages using Friedman's ANOVA
(x?(2) = 22.16,p < 0.001) (Fig. 4, bottom left panel, and Table 1).
Post hoc comparisons between the peak channel SNR using the
Wilcoxon Signed Ranks test revealed that there existed significant
differences between 128-channel and 16-channel montages
(p=0.019), and between 128-channel and 8-channel montages
(p =0.003). Also, there was a significant difference in peak channel
power among 128, 64, 32, 16, 8-channel montages
(x%(2) = 10.98,p < 0.022) (Fig. 4 bottom right panel, Table 2). Post
hoc analysis using the Wilcoxon Signed Ranks test revealed a sig-
nificant difference between the peak channel power of 128-chan-
nel and 8-channel montages (p=0.003). These results showed
that the peak channel SNR did not have significant difference when
using 128, 64, and 32-channel montages, and the peak channel
power did not have significant difference when using 128, 64, 32
and 16-channel montages.

3.3. Time—frequency filtering

The SNR of single-trial short-latency SEPs was increased using a
time-frequency filter based on CWT. The left panel of Fig. 5
showed the averaged time-frequency representation of single-trial
SEP responses from all subjects (top and bottom plots were,
respectively, the time-frequency representations without and with
baseline correction, which was achieved by subtracting the aver-
age power of the signal enclosed in the time-interval ranging be-
tween —50 and 0 ms). The baseline-corrected time-frequency
representation, which was used to derive the wavelet filter model,
was characterized by a phase-locked signal power increase be-
tween 30 and 120 ms in time, and between 30 and 60 Hz in fre-
quency (Fig. 5, left panel). The bottom panel of Fig. 3 and the
middle panel of Fig. 5 showed how this time-frequency filter re-
duced minimally the amplitude of the response and increased
remarkably its SNR. In addition, the bottom panel of Fig. 3 showed
the effect of the time-frequency filter on single-trial resting EEG.
While in the SEP waveforms the wavelet filtering significantly en-
hanced the SNR of the phase-locked SEP responses (SNR before

time-frequency filtering: 0.046 £ 0.027; after time-frequency fil-
tering: 0.14+0.11; 2.98 +1.29 times enhanced, p=0.001, two
tailed Wilcoxon Signed Ranks test) (Fig. 5, right panel), in the rest-
ing EEG the wavelet filtering only reduced the noise.

3.4. Validity test using ongoing EEG

To test if the space-time-frequency filtering method intro-
duced any bias in the analysis, the same PICA and WT techniques
were applied to 100 resting EEG trials obtained for each subject
(Fig. 3).

Peak latencies of cortical SEP complex (P39-N50-P60) were
measured from the averaged SEP waveforms for each subject,
and the corresponding single-trial amplitudes at these latencies
were measured from both filtered SEP recordings and filtered rest-
ing EEG. The single-trial amplitudes from resting EEG trials yielded
a mean (xSD) amplitude value of —0.045+0.37pV,
0.025+0.54 uV, and —0.026 £ 0.55 pV for P39, N50, and P60,
respectively. These amplitude values were not significantly differ-
ent from zero (F=1.429, p=0.221, one-way ANOVA). In contrast,
the single-trial amplitude values from SEP trials yielded a mean
(¢SD) amplitude value of 1.39+1.23 pV, —2.56+2.17 uV, and
0.95 +1.96 pV for P39, N50, and P60, respectively. A comparison
of the single-trial amplitudes obtained from the SEP waveforms
and the resting EEG trials for a representative subject was shown
in Fig. 6. This result confirmed that the described method provided
an unbiased estimate of single-trial SEP responses without intro-
ducing any spurious result.

4. Discussion

In this study, a space-time-frequency filtering method which
combined PICA-based spatial filtering and CWT-based time-
frequency filtering was developed and applied to multi-channel
SEP recordings. Three main findings were observed from the
experimental results. First, we show that SEP-related activities
can be successfully isolated by PICA with correct patterns of
waveform shapes, peak topographies and dipole source locations.
Second, we provide quantitative evidences, including peak channel
SNR and peak channel power of SEP responses, to illustrate that a
32-channel montage is able to provide a reliable and accurate
estimation of single-trial SEPs using the proposed method. Third,
we show that, after removing noise by PICA, the SNR of SEP
responses can be significantly enhanced using time-frequency
filtering, both in average and single trials.
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Fig. 5. Effect of time-frequency filtering on single-trial SEP responses. Left panel: time-frequency representation of SEP responses, obtained from CWT, is shown in the top of
Left panel, while baseline corrected time-frequency representation which highlights phase-locked SEP responses is presented in the bottom of left panel. Middle panel: single-
trial SEP responses and the time-frequency filtered responses are shown in the top and bottom of middle panel (smoothing = 3). Right panel: comparison of SNR before and
after time-frequency filtering across all subjects. Asterisk * indicates a significant difference between SNR of SEP responses before (SNR = 0.046 + 0.027) and after time-
frequency filtering (SNR =0.14+0.11) (p = 0.001, two tailed Wilcoxon Signed Ranks test).

4.1. Spatial filtering

ICA has been widely applied to decompose a multivariate signal
into additive subcomponents under the assumption of mutual
statistical independence of the non-Gaussian source signals
(Hyvarinen and Oja, 2000; Makeig et al., 1997). When applied to
multi-channel EEG recordings (or ERP data), ICA would decompose
the signal into the same number of ICs as the total number of
recording channels (Makeig et al., 1997; Mouraux and lannetti,
2008), referred to as unconstrained ICA. However, unconstrained
ICA has several critical problems. First, unconstrained ICA is likely
to overestimate or underestimate the total number of ICs from mul-
ti-channel EEG recordings (Beckmann and Smith, 2004; Mouraux
and Iannetti, 2009), which results in either spurious ICs or informa-
tion loss. Second, unconstrained ICA, especially when applied to EEG
recordings from 128 or 256 channels, will dramatically increase the
computational complexity (Beckmann, 2004; Beckmann and Smith,
2004). Third, unconstrained ICA is sensitive to errors caused by ran-

dom noise (Delorme and Makeig, 2004; Tang et al., 2005), and in
theory can hardly be used to separate more than one Gaussian dis-
tributed sources reliably (Hyvarinen and Oja, 2000).

All these fundamental limitations of unconstrained ICA can be
addressed using PICA (Beckmann and Smith, 2004; Mouraux and
lannetti, 2009). First, by constraining the total number of estimated
ICs to an effective number of independent sources, PICA is able to
provide a more accurate estimation of ICs compared to that of
unconstrained ICA. We have shown in this study that the PICA esti-
mated 32+ 13 ICs from 128-channel EEG recordings, and each
obtained IC is more likely to represent a single physiological source
of activity (Fig. 2). Second, the problem of high computational com-
plexity when using unconstrained ICA can also be satisfactorily
overcome using PICA by constraining the total number of esti-
mated ICs. The PICA can be completed quickly with satisfactory
outputs, while unconstrained ICA packages, such as runica routine
(Delorme and Makeig, 2004), frequently brought about the “out of
memory” message in Matlab (2 CPU of 1.8 GHz and 2 GB RAM)
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Fig. 6. Comparison of single-trial amplitudes from single-trial SEPs and resting EEG. Each point represents the amplitude of one single trial at their corresponding latencies
(number of trials = 100). Amplitudes of SEP trials are often one-side distributed (P39: 1.39 + 1.23 pV, N50: —2.56 + 2.17 pV, P60: 0.95 + 1.96 V). In contrast, amplitudes of
resting EEG trials at the same latencies are distributed around zero (P39: —0.045 + 0.37 nV, N50: 0.025 + 0.54 pV, P60: —0.026 + 0.55 pV). Note that the amplitude values of
resting EEG trials were not significantly different from zero (F = 1.429, p = 0.221, one-way ANOVA).



1438 L. Hu et al./Clinical Neurophysiology 122 (2011) 1429-1439

when used for 128-channel EEG recordings. After downsampling
the single-trial EEG data from 1000 Hz to 500 Hz, we found that
the computation time ratio between unconstrained ICA and PICA
was 26 + 32 times, which verified that PICA is much faster than
the unconstrained ICA. Third, using the Gaussian mixture model
(Eq. 1), PICA is robust to the random noise contribution in multi-
channel EEG recordings (Beckmann, 2004; Beckmann and Smith,
2004). In PICA, the Gaussian noise can be removed by PPCA, before
IC estimation, thus resulting in a more accurate IC decomposition
compared to the unconstrained ICA.

For these reasons, PICA is adopted in this study instead of the
conventional unconstrained ICA as a spatial filter to identify and
isolate SEP-related ICs from multi-channel SEP recordings, thus
enhancing the SNR of SEP responses, especially in the case of all re-
corded channels. However, the SNR after PICA is still relatively low,
especially in single trials (Fig. 3, middle panel), which may be
caused by the large-scale frequency contribution (part of the con-
tribution in some frequency may be caused by noise that is not re-
lated to the presentation of sensory stimulus) of the single-trial
waveforms. For this reason, time-frequency filtering, which is able
to capture the unique time-frequency characteristic of SEPs, is
needed.

4.2. Time—frequency filtering

To enhance the SNR of single-trial SEPs to a higher degree,
time-frequency filtering, based on CWT, was applied to single-trial
SEP responses, which have been preliminary spatial filtered using
PICA (Figs. 1 and 3). The CWT can offer an optimal compromise be-
tween time and frequency resolution by adjusting the window
width as a function of the estimated frequency. Compared with
the fixed windowed Fourier transform, the CWT is more suitable
for exploring event-related modulations of the EEG spectrum in a
wide range of frequencies (Mouraux and Iannetti, 2008), and there-
fore would provide a more effective time-frequency filter (Effern
et al,, 2000a,b; Mouraux and Plaghki, 2004; Nenadic and Burdick,
2005; Quiroga and Garcia, 2003; Wang et al., 2007).

The time-frequency filter model was generated by thresholding
the time-frequency representation of single trials from all subjects
in order to achieve the highest SNR (Fig. 5). Note that 90% of the
largest information on the time-frequency plane has been pre-
served since the time-frequency pixels in the time-frequency filter
model were set to 1 when the power of the corresponding wavelet
coefficient was larger than 90% of the maximum values. Impor-
tantly, the percentage of preserved information on the time-fre-
quency plane can be adjusted by users according to their
applications, and thresholds ranging between 80% and 90% would
provide very similar results in this study.

4.3. Advantages and potential applications

Single-trial SEP responses with high SNR can be detected from
multi-channel EEG recordings by combining PICA-based spatial fil-
tering and CWT-based time-frequency filtering which have several
advantages as follows.

First, multi-channel SEP recordings can be decomposed into a
limited number of ICs, and SEP-related ICs (Fig. 2) can be identified
and separated automatically using the proposed criteria. The pat-
tern of SEP-related ICs (i.e., the waveform shape, scalp topogra-
phies and location of dipole sources), which may be influenced
by the physiological or pathological changes (e.g., SEP abnormality
in comatose patients, and cortical myoclonus patients (Cruccu
et al,, 2008)), can be effectively detected using PICA for further
diagnosis. For this reason, accurate estimation of SEP-related ICs
from multi-channel EEG recordings would provide more important
information for both basic and clinical applications.

Second, the SNR of SEP recordings, both in average and single
trials, can be remarkably enhanced by the space-time-frequency
filtering. Considering that the amplitudes of short-latency SEP re-
sponses are small (on the order of 1V, see Figs. 2, 3, 5 and 6) in rela-
tion to the background ongoing EEG (on the order of tens of puV,
Fig. 3) in which they are embedded (Rugg and Coles, 1995), the
SNR of short-latency SEPs is very low. However, the space-time-
frequency filtering provided a good filter performance on the sin-
gle-trial short-latency SEPs. For this reason, the proposed method
is a potentially powerful approach to detect various types of ERPs
(both short-latency and long-latency ERPs). Across-trial variability
of single-trial ERPs, which may reflect very important physiological
or pathological changes, can be detected using the proposed meth-
od (Fig. 6). By correlating the single-trial SEP parameters with
stimulus parameters (e.g., stimulus intensity, duration, and loca-
tion) and/or behavioural variables (e.g., the intensity of perception
and the reaction time), we are able to investigate and understand
new mechanisms of brain processing (lannetti et al., 2005; Mou-
raux and lannetti, 2008). In addition, simultaneous recording of
EEG during fMRI will lead to particularly low SNR of EEG data
due to the substantial artifacts in the fMRI environment (Mayhew
et al., 2006, 2007, 2010; Mouraux and Iannetti, 2008). The pro-
posed method would be useful to detect single-trial ERPs that were
simultaneously recorded with fMRI, and investigate the correlation
between across-trial variability of ERPs with fMRI responses at sin-
gle-trial level to study the functional significance of different brain
mechanisms (Goldman et al., 2009; lannetti and Mouraux, 2009;
Mayhew et al., 2010; Mobascher et al., 2009; Mouraux and lan-
netti, 2008).

Third, by calculating the unmixing matrix W), the orthogonaliz-
ing matrix W; from PICA and the time-frequency model Wy from
the time-frequency filtering (Fig. 1) using training dataset for each
subject in advance, the proposed method can be carried out com-
putationally very efficiently. For this reason, this method is prom-
ising for applications to real-time SEP extraction, and potentially
useful for intraoperative monitoring during surgery to prevent pos-
sible and/or potential neurological damage or induced physiologi-
cal changes (Cruccu et al., 2008; Deletis and Shils, 2002; Hu et al.,
2002; Luk et al., 1999, 2001; Nuwer, 1998).
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