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1. Introduction

The blink reflex (BR) is a protective eye-closure reflex mediated
by brainstem circuits and triggered by fast-rising and intense stim-
uli from a variety of sensory modalities. Fig. 1 summarizes the var-
ious ways to elicit the BRin clinical practice and research. The most
conventional way of BR elicitation is the application of electrical
stimuli to the supraorbital nerve (SON), a terminal branch of the
first division of the trigeminal nerve, typically in the forehead.
Most commonly, stimulus intensity is about 10 times sensory
threshold, and the interstimulus interval (ISI) between two consec-
utive single stimuli should not be less than 10 seconds to avoid
habituation. Sensory afferents of the SON project to the principal
sensory nucleus (PSN) and the spinal trigeminal nucleus (STN) in
the brainstem. From there, fibers take an oligosynaptic route to
the ipsilateral facial nucleus through the pons, and a polysynaptic
route to both ipsi- and contralateral facial nuclei via the pon-
tomedullary reticular formation (Fig. 1). BRs consist of orbicularis
oculi muscle (0OOc) contraction and levator palpebrae muscle
relaxation to allow for lowering of the upper eyelid (Esteban,
1999; Aramideh and Ongerboer de Visser, 2002). However,
response analysis is usually limited to the electromyographic
(EMG) activity picked up with surface electrodes from the OOc.
There are many ways to elicit and to modulate a BR, and each
has its history. This two-part review aims to provide an up-to-
date summary of the various approaches to elicit and modulate
the BR in health and disease.
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2. History of the blink reflex and its modulation (Markus Kofler)
2.1. Initial studies applying mechanical stimuli

The first description of the BR dates back to 1896, when Walker
Overend’s observations were published in the Lancet (Overend,
1896). He noted: “When the skin of one-half of the forehead is gently
tapped with the edge of an ordinary wooden stethoscope a twitch in
the lower eyelid of the same side may be observed. .. If the percussion
be made a little stronger the upper portion of the orbicularis also takes
part in the response, while severe percussion elicits in addition a
simultaneous movement of the opposite lids.” He was the first to
describe what we now call the glabella reflex: “Slight tapping in
the middle line of the forehead is followed by twitchings on both sides.
In many instances, however, and particularly after some amount of
education or when the skin of the forehead is abnormally sensitive,
gentle stroking alone is sufficient to evoke the reaction.” He observed
conditions with increased reflex excitability, suspected “a true skin
reflex”, and noted: “The motor path is identical with that of the con-
junctival reflex; the sensory channels lie in the supratrochlear and
supra-orbital divisions of the frontal nerve, while the centre is proba-
bly located in the mid-brain.” He even described absence of the
response in “hemianaesthesia” but not in “hemiplegia”. All these
observations are still valid to date.

In subsequent years, facial reflexes were clinically described
under many different names according to the area tapped, the
muscles responding, and the mechanism considered to be
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Fig. 1. Simplified scheme of the blink reflex circuitry with the pontomedullary reticular formation as the central brainstem structure mediating all kinds of blink reflexes in
response to various afferent modalities. CN = cochlear nuclei; PSN = principal sensory nucleus of the trigeminal nerve; STN = spinal trigeminal nucleus of the trigeminal nerve;
VN = vestibular nuclei. Note that the early R1 response following supraorbital nerve (SON) stimulation is mediated via the PSN, connecting only with the ipsilateral facial
nucleus, whereas the late responses are conveyed via the ipsilateral STN to the pontomedullary reticular formation from where ipsi- (R2) and contralateral (R2c) responses
are generated. Blink reflexes evoked by other sensory modalities lack the ipsilateral R1 component. The reticular formation is a complex neuronal network containing
numerous diffuse and highly organized regions (Crossman, 2005; Brodal, 2004c). Hence, only the main pathways are shown. Various afferents comprise the trigeminal nerve,
in particular the SON (see section 2, Hopf, 1994; Pellegrini et al., 1995; Berardelli et al., 1999; Esteban, 1999; Aramideh and Ongerboer de Visser, 2002; Cruccu et al., 2005;
Valls-Solé, 2012, 2019; Kimura, 2013), but also other branches of the trigeminal nerve (Kugelberg, 1952; Oka et al., 1958; Gandiglio and Fra, 1967; Kimura, 1973; Hess et al.,
1984; Jaaskeldinen, 1995; Valls-Solé et al., 1996; Pavesi et al., 1996). Extratrigeminal sensory afferents have been demonstrated by Gandiglio and Fra (1967), Miwa et al.
(1995, 1996, 1998), and Alvarez-Blanco et al. (2009). Visual input is relayed via retinotectal and tectoreticular fibers (Crossman, 2005). Cochlear and vestibular afferents are
described in Brodal’s chapters 8 and 9, respectively (Brodal, 2004a, 2004b) and in Gray’s Anatomy (Crossman, 2005). The pathway of the auditory blink reflex is depicted
according to Hori et al. (1986), not showing the involvement of the colliculus inferior. The majority of trigeminal pain fibers, but not all, are transmitted through the STN (see
section 7 for details).

responsible. The BR was independently “rediscovered” and (Galant, 1926), laryngo-palpebral (Gallenga, 1930), palatal palpe-
reported (McCarthy, 1901, 1902b; Hudovernig, 1901, Editorial bral (Imperatori, 1930), and zygomatic-palpebral reflex (Galant,
1901; Bechterew, 1901, 1902; Overend, 1902; Weisenburg, 1903; 1932). Finally, Wartenberg (1944) proposed the term “orbicularis
Zeri, 1906), as later reviewed by others (Fine et al., 1992; Pearce, oculi reflex” to summarize and replace the long and confusing list
2008). of these facial reflexes.

While first postulating a “true skin reflex” (Overend, 1896),
Overend later suggested additional contributions from “periosteal

terminal twigs ... of all the branches of the ophthalmic nerve” 2.2. The blink reflex to electrical trigeminal nerve stimulation
(Overend, 1902), in line with an earlier proposal by Bechterew
(1901, 1902). McCarthy (1901) suggested a “pure nerve reflex” The Swedish neurologist Eric Kugelberg (1952) was the first to

identical to tendon reflexes but noted later that warm and cold record “an electrical discharge coming in two groups” recorded from
stimuli applied to the skin in the distribution of the SON were also the OOc. He described the first response as “a well-synchronized

capable of eliciting the reflex, thus refuting a periosteal reflex gen- volley with a latency of about 12 ms. .. unilateral. .. through a simple
eration (McCarthy, 1902a). Other suggestions included “an over- arc. .. compatible with a myotatic reflex” and the second response as
flow of the muscular irritability to mechanical irritation into “long-lasting asynchronous discharge with a variable latency, roughly
neighbouring muscles innervated by the same nerve* (Hudovernig, 21-40 ms... bilateral... reflex arc is multisynaptic... at least some

1901), a "defense reflex* neither cutaneous nor periosteal part passes over the spinal tract of the trigeminal nerve... adequate
(Kornilow, 1903), a bone reflex (Lewandowsky, 1910), skin and stimuli are pain and probably touch” [for the second but not the first
periosteal reflex (Guillain, 1920), perichondreal reflex component]. He was also the first to perform intraoperative electri-
(Simchowicz, 1922), and finally myotatic or muscle stretch reflex cal stimulation of the trigeminal nerve root in a patient with
(Weingrow, 1933). It has long been known, though, that facial trigeminal neuralgia during trigeminal rhizotomy, confirming

muscles have no stretch reflexes (Sternberg, 1893; Sommer, Overend’s observations of an absent BR in case of anesthesia
1938), as typical muscle spindles are lacking in human facial mus- (Overend, 1896), here due to a trigeminal nerve lesion. Subse-
cles (Kadanoff, 1956). quently, Rushworth (1962), who first noted a possible association

Based on the site stimulated, several reflexes were described in with the reticular formation, Bender (1968) and Gandiglio and
these years: auriculo-palpebral (Kisch, 1919) cephalon-palpebral Fra (1967) largely confirmed Kugelberg’s findings.
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Rushworth (1962) compared BRs following mechanical stimula-
tion with those to electrical, corneal (touch), auditory, and photic
stimuli, noting many similarities but also some distinct differences
in health and disease. As previously suggested (Kornilow, 1903;
Bohme, 1927), the nociceptive and protective nature of the BR eli-
cited by various stimulus modalities was noted by several authors
(Wartenberg, 1944; Kugelberg, 1952; Gandiglio and Fra, 1967;
Shahani, 1970). Shahani and Young (1968) noted similarities of
the two-component BR to flexor reflexes in the tibialis anterior
muscle following electrical stimulation of the foot sole. They sug-
gested that both BR components would be of cutaneous rather
than proprioceptive origin and - based on similar changes at differ-
ent stages of anesthetic block - be elicited by the same medium
sized cutaneous fibers (Shahani, 1970). In this line, patients with
Friedreich ataxia (who lack large-diameter afferents) had a pre-
served BR in the absence of soleus H reflexes (Shahani, 1970).
Shahani and Young (1972) noted that “the second component of this
reflex has been shown to correlate with closure of the eyelids. The sig-
nificance of the first component remains to be elucidated”, a state-
ment still valid to date. The terminology “R1” and “R2” for the
early and late components appeared first in 1972 (Penders and
Delwaide, 1972). The underlying BR pathways and their (patho-)
physiology and clinical utility have since been elaborated in ani-
mals and humans by several research groups, e.g., led by Evinger,
Kimura, Ongerboer de Visser, Esteban, Berardelli, Cruccu, Hopf,
and Valls-Solé (reviewed in Hopf, 1994; Pellegrini et al., 1995;
Berardelli et al., 1999; Esteban, 1999; Aramideh and Ongerboer
de Visser, 2002; Cruccu et al.,, 2005; Valls-Solé, 2012, 2019;
Kimura, 2013). Briefly, R1 is a pontine reflex with a latency of about
10-12 ms, and R2 is a pontomedullary reflex appearing at a latency
of some 29-37 ms (Kofler et al., 2013). At low stimulus intensities,
R2 may occur substantially later, in our experience up to 50-60 ms.
R1 and R2 are mediated by A afferents, but R2 responses can also
be triggered by thermal and nociceptive stimuli (Romaniello et al.,
2002), suggesting that they are mediated by wide-dynamic-range
(WDR) neurons of the STN (Pellegrini et al., 1995; Ellrich and
Treede, 1998) (see section 7).

“Sporadic third responses”, possibly an early account on the R3
component of the BR, were first reported by Gandiglio and Fra
(1967). The first description of R3 was published in 1972
(Penders and Delwaide, 1972). It was long considered to be a noci-
ceptive reflex component (Rossi et al., 1989; D’Aleo et al., 1999;
2000); however, Ellrich and Hopf (1996) were the first to suggest
that R3 might actually be a startle response, as the response disap-
pears after announcing stimulation (Rossi et al., 1993; Ellrich and
Hopf, 1996) and emerges at stimulus intensities clearly below pain
threshold (Ellrich et al, 2001). Meincke et al. (1999) found
increased excitability of the R3 component in patients with
schizophrenia but attributed this to attentional deficits rather than
a reduced pain threshold. Later, Tellez et al. (2009) reported the
preservation of R3 in two patients with congenital indifference to
pain. Others confirmed the presence of R3 responses following
non-nociceptive but startling stimuli (Kofler et al., 2013; Versace
et al., 2020). At present, the R3 is considered a sporadic response,
appearing at an approximate latency of 60 to 90 ms and not always
clearly separated from the R2.

Electrical stimulation of nerves other than the SON may also eli-
cit a BR, e.g., the infraorbital nerve, although less consistently, as
already shown by Kugelberg (1952) and later confirmed by others
(Oka et al., 1958; Gandiglio and Fra, 1967; Kimura, 1973; Hess
et al,, 1984; Valls-Solé et al., 1996) (Fig. 1). Gandiglio and Fra
(1967) noted that similar two-component responses could be
obtained from OOc bilaterally following chin-tapping and electrical
stimulation of mental and upper limb nerves (median and ulnar
nerves at elbow and wrist), thus refuting the earlier postulated
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myotatic nature of the first reflex component. Lingual nerve stim-
ulation also elicits an R2-like response in OOc (Pavesi et al., 1996).

2.3. Corneal blink reflexes

As a protective reflex, the corneal reflex resembles to some
degree the BR obtained to electrical SON stimuli. The first studies
applied completion of an electrical circuit triggering an oscillo-
scope by means of a knobbed probe or air puff (Kugelberg, 1952),
a fine camel’s hair brush moistened in isotonic saline (Magladery
and Teasdall, 1961) or a small loop of stainless steel wire
(Rushworth, 1962). Other techniques employed saline jet
(Thatcher and Van Allen, 1971), weak contact with a small metal
ball (Ongerboer de Visser et al., 1977), electrical stimulation
through a saline-soaked cotton thread (Accornero et al., 1980;
Berardelli et al., 1983; 1985a), or mechanical stimulation by apply-
ing an air or water jet from an electrically operated pump
(Accornero et al., 1978).

The corneal reflex shows some characteristic differences from
the BR to electrical SON stimulation. Foremost, it lacks R1
(Kugelberg, 1952; Magladery and Teasdall, 1961; Rushworth,
1962; Thatcher and Van Allen, 1971). The bilateral responses have
longer latencies than R2 with large inter- but little intra-individual
variability (Ongerboer de Visser et al., 1977; Berardelli et al., 1983).
Unlike for electrical SON stimulation, there is formal evidence of
response amplitude growth with increasing intensity for air puff
stimulation (Flaten and Blumenthal, 1998). The corneal reflex
shows less suppression with paired stimuli (Cruccu et al., 1986)
and less habituation (Magladery and Teasdall, 1961; Ongerboer
de Visser et al., 1977; Cruccu et al., 1986). It is mediated by AS
fibers in the ciliary branch of the ophthalmic nerve (Fig. 1).

2.4. Auditory stimulation and the blink reflex

Blinking on auditory stimulation is closely related to the startle
reaction. Early reports of the ‘cochleo-facial, cochleopalpebral,
auriculo-palpebral, auropalpebral or acoustico-palpebral reflex'
(Bechterew, 1896; Stoerk, 1921; Carrari, 1925; Galant, 1926;
Veits, 1926) were followed by detailed clinical description and cin-
ematographic analysis of the auditory startle reaction following a
pistol shot (Strauss, 1929; Landis and Hunt, 1936).

BRs to clicks had shorter latencies compared to glabella taps
(Rushworth, 1962) or photic stimuli (Yates and Brown, 1981;
Tackmann et al., 1982) and were less consistent than those to elec-
trical SON stimulation (Rushworth, 1962; Bender, 1968) or photic
stimuli (Yates and Brown, 1981). Normative values were also pub-
lished (Shahani and Young, 1973; Silverstein et al., 1980).

While many authors consider the auditory BR equivalent to, or a
consistent part of, the auditory startle reaction (Gogan, 1970; Fox,
1978; Esteban, 1999), others described a separate pathway for the
auditory BR involving inferior colliculus and midbrain reticular for-
mation (Buser et al., 1966; Hori et al., 1986), located more rostrally
than the auditory startle circuit (Davis et al., 1982). Such a differ-
entiation concurs with differences in the rate of habituation of
the two reflexes (Brown et al., 1991b), differential susceptibility
to prepulses (Meincke et al., 2002), separation of the two reflexes
in case of delayed startles (Brown et al., 1991a), or preservation
of the auditory BR in patients with otherwise absent startle reac-
tion (Vidailhet et al., 1992; Kofler et al., 2006) (Fig. 1).

2.5. Peripheral nerve stimulation: Somatosensory blink reflex
Gandiglio and Fra (1967) provided the first account of BRs eli-

cited by extracephalic nerve stimulation (median and ulnar nerves
at elbow and wrist). Miwa et al. (1995, 1996, 1998) elicited EMG
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responses in OOc following stimulation of the median nerve at the
wrist or index finger, which could not be recorded from orbicularis
oris, sternocleidomastoid, posterior neck, and pectoralis major
muscles. As such, these responses can be regarded a somatosen-
sory BR rather than a somatosensory startle reflex (Fig. 1). Stimu-
lation at the ankle (posterior tibial or sural nerve) failed to elicit
BRs (Miwa et al., 1995). Alvarez-Blanco et al. (2009) obtained
somatosensory blink and startle responses following median nerve
stimulation, and only somatosensory startle responses following
tibial nerve stimulation, concurring with a higher likelihood to eli-
cit protective BRs with stimuli closer to the face (Sambo et al,,
2012b). Analogous to the differentiation of auditory blink from
auditory startle reflexes (Brown et al., 1991b), a similar differenti-
ation of somatosensory blink from somatosensory startle reflexes
(Brown et al., 1991a) seems plausible.

Somatosensory BRs were rarely studied apart from startle reac-
tions and thus from hyperekplexias. The group of Meral Kiziltan
studied associations among median nerve somatosensory and
trigeminal BRs, peripheral facial palsy, and postparalytic facial syn-
drome after excluding startle blinks based on response latencies
(Erkol et al., 2009). The topographic utility of median nerve
somatosensory versus trigeminal BRs was documented in patients
with mesencephalic or medullary vascular lesions, revealing differ-
ential dysfunctions depending on lesion location (Leon et al.,
2011). The group of Giandomenico lannetti contributed several
publications to the field of somatosensory BRs. They used the so-
called “hand-blink reflex” (HBR) as a tool to reveal gradual reflex
modulation as a function of the proximity between the stimulated
hand and the face (Sambo et al., 2012b; Bufacchi and lannetti,
2018). A detailed account of BR modulation in the peripersonal
space follows in section 5, the modulation of the HBR by prepulses
and by self-agency (Versace et al., 2021) is described in section 6.

2.6. The blink reflex to other sensory modalities

2.6.1. Visual / photic stimulation

Landis and Hunt were the first to report startle BRs to visual
stimuli (Landis and Hunt, 1939). BR latencies to photic stimuli
were longer and more variable as compared to electrical SON stim-
ulation, ranging on average from 45 to more than 75 ms
(Rushworth, 1962; Bender, 1968; Hopf et al., 1973; Lowitzsch
et al., 1976; Yates and Brown, 1981; Tackmann et al., 1982),
depending on the area, intensity and wavelength of the stimulus
employed. The exact reflex pathway still remains uncertain, how-
ever, the cerebral cortex seems to be bypassed, as reflex blinking
may remain intact in hydranencephaly (Hill et al., 1961) and occa-
sionally in neocortical death in humans (Keane, 1979) (Fig. 1).

2.6.2. Vestibular and kinematic stimulation

Sudden free fall may serve to elicit a vestibular startle response,
including reflex blinking (Bisdorff et al., 1994) (Fig. 1). Passive knee
flexion of sufficiently high angular velocity may elicit a kinematic
startle reflex, including reflex blinking amenable to modulation
by prepulse stimuli or by a concomitant motor task (Castellote
et al., 2017). When performing the video-head impulse test, "con-
taminating’ blink reflexes may be interfering with the analysis of
eye movements (Mantokoudis et al., 2015; Pleshkov et al., 2022).

2.6.3. Pain and heat stimulation

Nociceptive stimulation may evoke protective reflexes and may
initiate complex protective behavior. According to Kornilow (1903)
the BR belongs to the “defense reflexes”, which was also suggested
by others (Bohme, 1927; Broser et al., 1964). Later, noxious electri-
cal stimuli (“train-of-four”) to the back of the hand were compared
to auditory startle blinks, revealing a similar pattern of excitation
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followed by inhibition when delivering two stimuli closely sepa-
rated, be it both auditory, both electrical or mixed. In contrast,
spontaneous and voluntary blinks were not followed by such a per-
iod of suppression (Fox, 1978). Duranti et al. (1983) used noxious
electrical stimulation through wire electrodes inserted into the
vastus medialis muscle to elaborate on BR characteristics with
varying repetition rates and intensities of electrical train stimuli.
BRs, corresponding to the electrically evoked R2 and R3 compo-
nents, were elicited by noxious laser stimuli applied to the oph-
thalmic nerve dermatome (Ellrich et al., 1997). The description of
the involvement of WDR neurons of the STN in the generation of
the R2 component of the BR (Pellegrini et al., 1995; Ellrich et al.,
1998; Ellrich and Treede, 1998) led eventually to the development
of a special type of concentric electrode to selectively activate A
afferents (Kaube et al., 2000; Katsarava et al., 2002) (Fig. 1). This
technique has been mostly applied in headaches (Coppola et al.,
2007; Magis et al., 2007, 2013) and has been found to be generally
useful and reliable (von Dincklage et al., 2010; Costa et al., 2017)
(see section 7 and part 2 of this review (Gunduz et al., submitted)).

2.7. Brief history of blink reflex modulation

Obvious influences on BRs relate to stimulus location and
modality (see above) (Soliven et al., 1988), electrical stimulus
intensity (Kimura et al., 1969; Ellrich and Treede, 1998) or contrac-
tion of the target muscle, allowing for unmasking subliminal R1
and R2 responses (Leis et al.,, 1993) and the appearance of con-
tralateral R1 responses (Willer et al., 1984; Soliven et al., 1988).
Fear, anxiety, and mental tasks were reported to affect BRs
(Esteban, 1999). BR did not differ significantly between males
and females, but R2 and R2c latencies increased with age (Kofler
et al.,, 2013). Attention to the blink-eliciting stimulus was reported
to increase R2 (Schicatano, 2016). However, other authors reported
the opposite: anticipation facilitates R1 and suppresses R2 (Ison
et al.,, 1990), whereas distraction facilitates R2 and R3 responses
(Rossi et al,, 1993). Self-triggered stimulation, which combines
attention, expectation, and sense of agency, also leads to R1
enhancement and R2 inhibition (see section 6). A facilitatory effect
on R2 is seen when stimuli are applied closer to the eye, within the
so-called peripersonal space (Sambo et al., 2012b; Versace et al.,
2020), an effect that will be fully described in section 5. Sleep
affects both R1 and R2 with higher thresholds in “synchronous
sleep” (Ferrari and Messina, 1972) and markedly smaller and fewer
responses in sleep stages Il - IV, with a relative increase of
excitability in REM sleep similar to stage I, but still less than during
wakefulness (Kimura and Harada, 1972). A reduction of BRs was
also observed with auditory (Silverstein et al., 1980) and photic
(Hoshina and Sakuma, 1991) stimulation applied during sleep.
Reflex elicitation during anesthesia has been used not only for
intraoperative monitoring (Deletis and Fernandez-Conejero,
2016) but has also shed light on certain aspects of physiology that
are impossible to study in awake humans (see section 8).

Pharmacological influences on the BR and its modulation may
also aid in the localization of the drug’s site of action. E.g., serial
BR recordings following intrathecal application of baclofen, an ago-
nist of gamma-amino-butyric acid (GABA) that is used to treat sev-
ere spasticity, showed changes that paralleled the time course and
degree of spasticity reduction, concurring with a brainstem site of
action (Kumru et al., 2011; Kumru and Kofler, 2012).

High-frequency repetitive transcranial magnetic stimulation
suppressed the R2 component of the BR (Kumru et al., 2019), and
also other non-invasive stimulation techniques may serve to mod-
ulate brainstem reflex excitability, as recently reviewed by Kumru
et al. (2021).
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The size of the BR can be experimentally modulated using var-
ious maneuvers. In his 1863 monograph Reflexes of the Brain,
Sechenov (1863) (reviewed in Stuart et al., 2014) proposed an inhi-
bitory center in the brain and thus was among the first to postulate
that reflexes can be centrally modulated. This occurs in fact in var-
ious neurological disorders, such as idiopathic Parkinson’s disease
(IPD), dystonia, stroke, multiple sclerosis, and others.

In a narrower sense, the term “modulation” may refer to the
change in a reflex response when modifying inputs coincide with
the response-eliciting stimulus in the CNS, increasing or decreasing
its reflex gain, depending upon the nature, intensity, and timing of
those inputs. In this line, various neurophysiological techniques
may serve to document modulation of the BR. A preceding condi-
tioning stimulus of the same characteristics as the test stimulus
may be applied to the SON for the paired-pulse paradigm. The first
report of suppression of the second relative to the first R2 response
following paired-pulse electrical stimulation dates back to 1968
(Ferro Milone and Perfetti, 1968). The authors observed a pro-
longed inhibition period in patients with corticospinal lesions
and the opposite with basal ganglia lesions. Penders and
Delwaide (1969) were the first to elaborate on R1 excitability
enhancement between ISIs of 20 — 80 ms. The clinical applicability
of this methodology took off after Kimura (1973) established the
procedure of paired-pulse testing using intervals between 100
and 1000 ms. These authors demonstrated enhanced BR excitabil-
ity recovery in patients with IPD. Since then, other authors have
used the same technique to show BR excitability abnormalities in
various disorders, i.e., focal, segmental, and generalized dystonic
disorders (Berardelli et al., 1985b; Tolosa et al.,, 1988; Cohen
et al, 1989; Nakashima et al., 1990; Valls-Solé et al., 1991;
Eekhof et al., 1996), hemifacial spasm (Eekhof et al., 1996; Valls-
Solé and Tolosa, 1989), Gilles de la Tourette syndrome (Smith
and Lees, 1989), functional tic disorder (Versace et al., 2019b),
and others. Paired-pulse stimulation was also applied in other
modalities, e.g., acoustic and visual, revealing facilitation at short
ISIs (30 ms for auditory, 50 ms for visual) and suppression at long
intervals (250 ms), similar to trigeminal nerve stimulation (Rimpel
et al., 1982). The authors also noted cross-modal modulation in a
similar time range.

A preceding stimulus of any modality may cause inhibition of
the R2 component of the BR, even if it is of an intensity low enough
not to elicit an overt response by itself. The technique of using a
low-intensity conditioning stimulus to inhibit the BR is known as
prepulse inhibition (PPI) (see section 4). PPI was first described
in the startle reflex (Graham, 1975). The use of the BR as a test
stimulus was first published by Ison et al. (1990), who showed
the disparate modulation of the BR components, i.e., facilitation
of R1 and suppression of R2 and described cross-modal modula-
tion, concurring with a “central effect” rather than “on their shared
endpoints”. PPI is a topic of ongoing research interest for many
authors (Garcia-Rill et al., 2019; Gunduz et al., 2019; Insola et al.,
2021; Kofler et al., 2023a). Interactions and similarities between
PPI and paired-pulse stimulation have been noted for more than
20 years (Swerdlow et al., 2002; Coppola et al., 2007; Kofler
et al.,, 2023a) but have still not been entirely resolved.

A related but not extensively studied form of BR modulation is
the habituation following serial stimulation. The first account of BR
habituation to auditory stimuli in humans dates back to 1937
(Oldfield, 1937). Penders and Delwaide (1971) were the first to
quantify reduced BR habituation in IPD. Dimitrijevic et al. (1972)
performed the first systematic study comparing sequential with
stochastic SON stimulation. Distraction from the stimulus dimin-
ished habituation (Gregoric, 1973), which was more pronounced
in Huntington’s disease than IPD (Esteban and Gimenez-Roldan,
1975; Caraceni et al., 1976; Ferguson et al., 1978). BR habituation
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was more pronounced following mental nerve than SON stimula-
tion (Jddskeldinen, 1995).

The classical conditioning paradigm, based on Pavlov’s seminal
experiments (reviewed in (Maren, 2001) and section 3), is a special
case of BR modulation. Subjects are presented with the combina-
tion of a warning stimulus and a BR-eliciting stimulus, either an
air-puff or an electrical SON stimulus, with fixed ISIs. After system-
atically repeating this combination of stimuli for several blocks,
subjects learn to produce a new reflex response timed just to pre-
cede the presentation of the reflex-eliciting stimulus. Notably, for
this form of learning the cerebellum and its associated brainstem
circuitry is both necessary and sufficient, whereas the hippocam-
pus is not necessary (Thompson, 1990). Pavlov’s discovery implies
in fact a new concept in the generation of reflexes, which should
not be considered just the mechanistic responses to stimuli, but
the result of behavioral adaptation to environmental conditions
(Windholz, 1986). Many studies of classical conditioning have been
carried out in animals and humans (Takehara-Nishiuchi, 2018) and
its clinical application to health and disease are discussed in sec-
tion 3. Readers who are interested in the history of classical condi-
tioning are referred to a review by Clark (2004).

The rest of this article is devoted to describing advances
acquired in our knowledge of the physiological mechanisms impli-
cated in some of the techniques referred to above.

3. Blink reflex conditioning (Mark Hallett)

The BR can be used to study classical conditioning, a form of
motor learning. This type of learning depends heavily on the cere-
bellum, and, therefore, it is a good way to evaluate cerebellar func-
tion. In this type of learning, a person (or other animal) learns to
make a (reflex) response to a stimulus that ordinarily would not
produce such a response. The learning is produced over time by
pairing a stimulus that does produce the response with the one
that does not ordinarily produce the response (Fig. 2). The stimulus
that is innately wired to produce the response is called the uncon-
ditioned stimulus (US), and the stimulus that produces the
response after pairing is called the conditioned stimulus (CS). In
BR conditioning, the BR to air puff to the eye or electrical stimula-
tion of the SON is commonly used to produce the unconditioned
response (UR). The air puff or electrical stimulus would be the
US. The CS is commonly an auditory tone that is subthreshold for
producing an auditory BR itself. The CS is given, then the paired
US, and after many trials, a blink is produced by the auditory tone;
this would be the conditioned response (CR).

Depending on the exact timing of the CS and US there are two
different types of conditioning. In delay conditioning, the US occurs
during the end of the CS and co-terminates with it. In trace condi-
tioning, there is a gap between the end of the CS and the US. Nota-
bly, the terminology is odd since there is a delay (or interval) in
trace conditioning, but not in delay conditioning.

The BR, specifically the R2, produced by the US is a brainstem
reflex. The pathway is the trigeminal nerve to the STN, the medul-
lary reticular formation, and the facial nerve (Valls-Solé, 2019).
Conditioning of the BR depends heavily on the cerebellum, partic-
ularly lobule VI and the interpositus nucleus (Takehara-Nishiuchi,
2018). The trigeminal information in the medulla also connects
with the inferior olivary nucleus which then sends climbing fibers
to the Purkinje cells of the cerebellum. The CS activates the audi-
tory nerve, which synapses in the pontine nuclei, activating mossy
fibers that stimulate granule cells which send their parallel fibers
to the Purkinje cells. The concordance of the climbing fiber and
parallel fiber input leads to synaptic changes at the parallel fiber-
Purkinje cell synapse that represent the learning (Robleto et al.,
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A. US produces UR ;

B. CS paired with US produces CR CR UR
B1: Trace conditioning. l, ;

CSt us

B2: Delay conditioning. l, ;
CSd

uUs
C: CS alone produces CR ‘

I CSt or CSd

D: Extinction results without further US

TGeorcsd

Fig. 2. Method of blink reflex conditioning. The horizontal axis is time with events marked. A. An unconditioned stimulus (US) produces an unconditioned response (UR). B. If
a conditioned stimulus (CS) precedes the US multiple times, if there is learning, there will be a conditioned response (CR) coming near the time of the UR, usually just before it.
B1 is trace conditioning with the CS ending before the delivery of the US (labelled CSt). B2 is delay conditioning with the CS ending at the same time as the US (labelled CSd). C.
After successful conditioning, delivery of the CS will produce a CR even without any US. D. If the CS is delivered multiple times without the US, the CR will eventually be
extinguished.

Control subject Cerebellar patient

”“MM Tone-alone

Ucs
csd 10V
400 ms

Fig. 3. Delay conditioning in a control subject and a patient with cerebellar degeneration. Timing of the stimuli is noted in the lower left, CS is the conditioned stimulus and
US is the unconditioned stimulus. The paradigm has 6 blocks with 10 trials per block, 8 with CS-US pairing, 1 with CS alone, and 1 with US alone, with a 10 second intertrial
interval. The CS was a tone lasting 400 ms. Traces are rectified electromyographic activity in orbicularis oculi muscle. The first 6 traces are examples of responses to the pair of
CS-US stimuli in the respective blocks, and the seventh trace is the CS, tone-alone, trace from the sixth block. In blocks 1 and 2 for the control subject and in all the blocks of
the patient, the only response seen is the unconditioned response (UR). Conditioned responses (CR) can be seen preceding the UR in blocks 3 to 6 and the tone-alone block of
the control subject. Only blinks in the interval between the vertical dotted lines are considered CR. Early blinks after delivery of the CS are called alpha blinks and are indicated
with *. From Topka et al. (1993) with permission.

136



M. Kofler, M. Hallett, G.D. Iannetti et al.

20

A

. delay

xX

?g;’ 100

(2]

§ 80

8 —=—MSA
a:c 60 —e—Control
E 40 sespees |PD
§ —-0--PSP
5

3

| -

o

(]

UCS block block block block block block CS

only 1 2 3 4 5 6  only

®7)

CS+ UGS

Clinical Neurophysiology 160 (2024) 130-152

trace

—-0=-PSP

Conditioned eyeblink responses (%) ©

UCS block block block block block block CS
only 1 2 3 4 5 6 only
(b7)

CS+ UCS

Fig. 4. Blink reflex conditioning in idiopathic Parkinson’s disease (IPD), healthy controls, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Delay
conditioning on the left and trace conditioning on the right. The graphs show percent of conditioned responses (CR) in each of 7 blocks. The unconditioned stimulus (US) is a
shock to the supraorbital nerve, the conditioned stimulus (CS) was a 400 ms tone. In delay conditioning the tone ended at the time of the shock; in trace conditioning there
was a gap of 600 ms between the end of the tone and the shock. There were 6 blocks with pairing of US and CS in trials 1 to 9, an US only in trial 10, and a CS alone in trial 11.
In the 7th block, there were 11 trials of the CS only (that would begin an extinction process). Note that conditioning is normal in IPD, but markedly diminished in MSA and PSP

in both types of conditioning. From von Lewinski et al. (2013) with permission.

2004). The output of the Purkinje cells is to the interpositus
nucleus and then via the red nucleus to the facial nucleus which
causes the blink. Some of the learning could also be at the Purkinje
cell-interpositus synapse.

There is also involvement of the hippocampus, and this is much
more for trace conditioning than delay conditioning, presumably
because a short memory is needed due to the gap between the
CS and US in trace conditioning. Evaluating the activity of individ-
ual parvalbumin-positive inhibitory interneurons in the hippocam-
pus showed that they supported trace but not delay conditioning
(Li et al., 2022). Most of the data come from animal studies, but
these results have been documented in humans as well. For exam-
ple, lesion studies show the importance of the cerebellum for eye-
blink conditioning (Gerwig et al., 2007). In a fMRI study, similar
involvement of the cerebellum was shown for both delay and trace
conditioning, but hippocampal involvement was mainly for trace
conditioning (Cheng et al., 2008). Using several novel techniques,
a cerebellar activity could be monitored with EEG during condi-
tioning of the otolith BR (Todd et al., 2021) and the maxillary nerve
stimulus BR (Todd et al., 2023). Even though the BR is a “subcorti-
cal” reflex, it is under some control by the cortex. If conditioning is
done while the subject is doing a working memory task, the
amount of conditioning is less (Etemadi et al., 2023).

Once conditioned, the BR can be extinguished by giving the CS
frequently without any US-pairings (Fig. 2). If the same CS is con-
ditioned a second time after extinction, the learning is faster (Hu
et al., 2015). This implies that the original learning is not com-
pletely erased. Additionally, it would be implied that the process
of extinction is not just a simple reversal of the conditioning pro-
cess. Experiments show that extinction is a type of inhibitory
learning that is mediated by the hippocampus for both delay and
trace conditioning (Hu et al., 2015; Robleto et al., 2004). Further
evidence that extinction is distinct from conditioning is that differ-
ent hippocampal cells are activated for the two processes (Mount
et al,, 2021).

Emotion affects most functions in the brain including BR condi-
tioning (Loi et al., 2021). Seeing pictures of sad faces will reduce
delay conditioning, while happy or neutral faces have no effect.
Extinction, on the other hand, will be shortened by happy and
sad faces. This finding can be taken as further evidence for the dif-
ference between conditioning and extinction. There is also an
effect of personality with extraversion leading to poorer condition-
ing (Eysenck, 1965; Todd et al., 2023).

BR conditioning is an excellent probe for cerebellar function. A
deficit in eyeblink conditioning in patients with cerebellar degen-
eration was first demonstrated in 1993 (Topka et al., 1993).
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Patients (n = 12) and healthy controls (n = 13) were studied with
delay conditioning and a marked difference was found between
groups (Fig. 3). The number of CRs grew rapidly in the controls
and only minimally in patients. Taken all together there were
CRs in 48.9 % of trials in controls and only 7.6 % of trials in patients.
In the tone-alone trials, the controls had CRs in 67.5 % of trials,
compared with only 25.7 % in patients. In experiments, care needs
to be given to be sure what blinks are really CRs. The investigators
considered only blinks < 200 ms before the expected UR to be CRs.
Blinks for the 200 ms after the start of the CS were considered
alpha blinks; that is, blinks related to the CS itself, too remote from
the expected time of a true CR. A similar result with delay condi-
tioning was published in 1993 by another group in 7 patients with
a mixture of degenerations, stroke, and cerebellar tumor post-
resection (Daum et al., 1993).

There is considerable evidence for cerebellar dysfunction in
patients with essential tremor. Two groups found delay BR condi-
tioning to be abnormal (Kronenbuerger et al.,, 2007; Shill et al,,
2009). In one of the studies (Kronenbuerger et al., 2007), some of
the patients had mild cerebellar signs and their results did not dif-
fer from the other patients.

There have been two studies of delay BR conditioning in IPD.
Both in the on- and off-state conditioning appears fully normal
(Daum et al., 1996; Sommer et al., 1999). Studies are also normal
in isolated dystonia (Sadnicka et al., 2022). BR conditioning is
abnormal, however, in progressive supranuclear palsy (Sommer
et al,, 2001) and multiple system atrophy (von Lewinski et al.,
2013) (Fig. 4). Hence, BR conditioning might be a good test to dif-
ferentiate IPD from other parkinsonisms.

In Alzheimer disease, BR conditioning is reduced presumably
because of hippocampal involvement. This was first reported in
1990 in 20 patients compared with 20 healthy age-matched con-
trols (Woodruff-Pak et al., 1990). The US was an air puff, and the
CS was a 400 ms tone in a delay paradigm. There were 90 trials,
80 with paired CS-US and 10 with CS alone. There was a big differ-
ence in conditioning. Using a criterion of 25 % CRs, 17 normal con-
trols were above criterion while only 1 of the patients was; this
gave a sensitivity of 95 % and specificity of 65 %. A second study
of 15 patients compared with 17 healthy controls was published
the next year with a similar study design. In a delay paradigm,
the US was an air puff, and the CS was a 500 ms tone. There were
70 trials in blocks of 10 with the first trial CS alone and the other
trials with paired CS-US. Using a cutoff of 20 % CRs, the investiga-
tors obtained a sensitivity of 80 % and specificity of 80 % (Solomon
et al, 1991). In a comparison of Alzheimer disease with vascular
dementia, more abnormality was seen in Alzheimer disease pre-
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Fig. 5. Simplified scheme of prepulse inhibition A prepulse stimulus of any of the modalities listed under ‘prepulse’ precedes a pulse stimulus, either a startling sound or a
supraorbital nerve electrical stimulus, by a specific time lapse. The volley generated by the prepulse reaches the brainstem where it causes inhibition of the responses
expected from the pulse stimulus, i.e., the startle reflex or the blink reflex (BR). The inhibition shows usually in a significant size reduction of either the startle reflex or the BR,
depending on the pulse stimulus modality. The prepulse volley may also generate a response by itself, such as a BR, depending on the prepulse stimulus intensity. Similar

mechanisms may apply in part also to circuits mentioned in Sections 5 and 6.

sumably due to the hippocampal pathology (Woodruff-Pak et al.,
1996). Recognizing that trace conditioning should be a more sensi-
tive test than delay conditioning, a study was done comparing
750 ms trace to 400 ms delay paradigms (Woodruff-Pak and
Papka, 1996). The 750 ms interval was thought to be optimal based
on animal experiments where trace conditioning was clearly supe-
rior to delay conditioning. Surprisingly however, delay condition-
ing was more sensitive. There is no clear explanation of this
finding, and the issue deserves more study.

In conclusion, BR conditioning is a good simple model to study
motor learning with correlative studies in animals and humans. It
appears to have useful clinical applications identifying, with speci-
ficity, conditions with cerebellar or hippocampal pathology. Cur-
rently, it is not utilized as much as it could be for clinical and
research purposes.

4. Gating and prepulse effects. Physiology and techniques (Josep
Valls-Solé)

PPI is usually regarded as an expression of gating. While this is
certainly consistent with present physiological knowledge (Garcia-
Rill et al., 2019), there are important differences between PPI and
gating. Both PPI and sensory gating relate to the same physiological
phenomenon implicated in the control of sensory inputs, however,
reflex responses are required for the expression of PPI but not for
sensory gating. Also for the expression of PPI, the relevant param-
eter governing the modulation of subsequent responses remains
the afferent sensory volley (Kofler et al., 2023b). PPI can in fact
be considered a special case of sensory gating.

While PPI is a phenomenological effect implying responses in
the motor system, gating is a physiological mechanism implicated
in the control of sensory inputs.

4.1. Prepulse inhibition and reflex responses

PPI is expressed on reflexes. The largest amount of work has
been done with either the startle reflex or the BR, although a few
authors have reported PPI in other reflexes, such as the masseteric
inhibitory reflex (Gomez-Wong and Valls-Solé, 1996) or autonomic
responses (Eder et al., 2009). The startle reflex is the test of choice
in animal experimentation studies, whereas the BR is often used in
humans, where a discrete recording from the OOc is sufficient for
most studies. Although blinking to some stimulation modalities
may be a local manifestation of the startle reaction, the BR elicited
by electrical stimulation of the SON has its own circuitry, the main
distinctive feature being the presence of the R1 in the ipsilateral
side of the stimulus. This early response (10-12 ms), which may
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also be occasionally seen with infraorbital nerve stimulation
(Aramideh and Ongerboer de Visser, 2002), results from activation
of the facial motoneurons after an oligosynaptic relay in the PSN
and thus it is not conveyed through the reticular formation as it
is the case with the R2 and R2c or the OOc responses to other stim-
ulation modalities. R2 and R2c responses follow the trigemino-
facial chain of interneurons lying in the pontomedullary reticular
formation and are, therefore, susceptible to modulation through
all inputs reaching the reticular formation within a certain preced-
ing time period, i.e., prepulses. In fact, such modulation is likely to
occur constantly in the human nervous system, where reflex
response elicitation results from the combined effect of stimulus
salience above background noise and prepulse modulation from
other environmental inputs. A main influence on prepulse modula-
tory effects originates in the pedunculopontine tegmental nucleus
(Garcia-Rill et al., 2019). Although the exact configuration of the
‘prepulse circuit’ is still unclear, Mamiya et al. (2005) found that
the output from cholinergic neurons of the pedunculopontine
nucleus caused hyperpolarization of neurons in the nucleus reticu-
laris pontis caudalis, limiting in this way the expression of incom-
ing inputs.

While the reflex responses for which PPl may be demonstrated
are essentially limited to the BR and the startle reflex, a diversity of
stimulus modalities may play the role of either prepulses or reflex-
eliciting stimuli (Fig. 5). A prepulse, by definition, precedes the
response-eliciting stimulus and the time interval in between is
essential for the effect. The peak of the inhibitory effect is
100 ms for an electrical stimulus to digital nerves, it occurs slightly
sooner for a mechanical tap to the hand, understandably later for
laser or contact-heat stimuli, and shows almost no delay for
intracranial electrical stimulation, in accordance with the distance
between the stimulation site and the structures mediating PPI
(Valls-Solé et al., 2000; Costa et al., 2006; Correa et al., 2019;
Insola et al., 2021). The long interval needed with contact-heat
stimuli to reach the brainstem was used as an advantage by
Correa et al. (2019) to examine the effects that a prepulse stimulus
might have on perception of the sensory volley. The rationale of
such a study was to search for neurophysiological signs of gating
using PPI methods: since PPI is caused by gating of the afferent vol-
ley, there should be an effect of prepulses on perception. To this
end, the authors used Libet’s clock (Libet, 2004), asking participat-
ing volunteers to report the time at which they felt the stimuli. The
onset times of such conscious perception in baseline trials were
353.4 ms (SD = 52.7 ms) for the SON stimulus and 733.6 ms
(SD = 75.6 ms) for the thermoalgesic stimulus (note the longer time
needed for perception of the thermoalgesic stimulus due to con-
duction in poorly myelinated peripheral nerve fibers and through
the spinothalamic tract). Therefore, possible effects on perception
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should take place when the SON stimulus is delivered more than
380 ms after the thermoalgesic stimulus. In fact, what the authors
found was a period of significant bidirectional changes in percep-
tion (shortening in the perception of the SON stimulus and delay
in the perception of the thermoalgesic stimulus) between 450
and 700 ms. This result suggests that, with the methods employed
by Correa et al. (2019), the effect of PPI on perception occurred in
both directions, although in real life, the effect may depend on the
specific focus of attention.

The works of Inui et al. (2012, 2018, 2022) deserve special men-
tion. These authors used the term PPI to report on the effect of a
low-intensity sound prepulse on the cortical responses to
suprathreshold auditory stimuli. Although such observation could
be used to widen the scope of prepulse effects to include non-
reflex responses, it fits closer to the idea of sensory gating (see
below) than that of prepulse, even though no analysis of percep-
tion was reported by Inui et al. (2012).

A variety of factors may influence the degree of PP, such as gen-
der (Kofler et al., 2013), body posture (Versace et al., 2019a), stim-
ulation site (Versace et al., 2019a), cognition (Versace et al., 2021),
and the subject’s emotional state such as attention (Dawson et al.,
1993) or fear (Gunduz et al., 2019). The information gathered in
these studies should be useful to strengthen its clinical utility
(see part 2 of this review (Gunduz et al., submitted).

4.2. On the relationship between prepulse inhibition and gating

The term ‘gating’ is employed in various areas of neurophysiol-
ogy, including ion channels in axonal membranes, afferent inputs
in their way towards conscious appraisal, sensory interference
with attention focusing, and others. The usage of the term more
akin to PPI is that of filtering out potentially disturbing inputs car-
rying irrelevant information for the ongoing signal processing. The
interference between two sensory volleys in their way to the cen-
tral nervous system (CNS) occurs at various levels of the neuraxis,
starting at the dorsal horn (Cohen and Starr, 1985; Stachowski and
Dougherty, 2021), and being already substantial with direct
recordings from thalamic nuclei (Costa et al., 2008).

However, a physiologically and clinically more interesting form
of gating relates to inhibiting afferent input during movement.
When we execute an action, the sensory inputs generated from
the joints, muscles, and skin participating in the movement are
actively attenuated. A comparator system between these sensory
signals and those predicted by the efference copy helps shape
the final movement outcome. When the result of the comparator
is zero, sensory attenuation occurs and a sense of being ourselves
the agents of the movement, i.e., sense of agency, is generated
(Haggard, 2017; Blakemore et al., 2000). This mechanism is likely
altered in patients with functional movement disorders, whose
probable deficit in sensory attenuation may lead to absent recogni-
tion of themselves as movement agents. Abnormal movement-
related gating has been demonstrated already by recording the
somatosensory evoked potentials (SEPs) at onset of self-paced
movements (Parees et al., 2014; Macerollo et al., 2015). But the
PPI of the BR may also be an important tool for expanding our
knowledge on the pathophysiology of the defective sensory atten-
uation of patients with functional movement disorders
(Hanzlikova et al., 2019) (see part 2 of this review (Gunduz et al.,
submitted)).

The neurophysiological study of gating and prepulse may con-
tribute to deepen our knowledge of the pathophysiological mech-
anisms of many neurological disorders. Gating and prepulse effects
are windows to CNS circuits devoted to control the inflow of sen-
sory signals, the main source of information for us to interact with
our surroundings.
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5. The blink reflex and peripersonal space (Giandomenico
Iannetti)

A bilateral reflex response in OOc can be elicited by electrical
stimulation of nerves different from the trigeminal nerve. The
responses obtained to upper and lower limb nerve stimulation
show characteristics similar to the R2 of the trigeminal BR (Valls-
Solé et al.,, 1994; Miwa et al., 1995, 1998; Alvarez-Blanco et al.,
2009). As detailed in section 2.5, the response elicited by median
nerve stimulation (the HBR) is larger than the one obtained with
stimuli applied to the lower limb. This difference is usually
explained with the shorter conduction distance and the conse-
quently more synchronized afferent volley generated by stimuli
applied to the upper limb (Alvarez-Blanco et al., 2009). However,
considering the protective value of blinking (Sherrington, 1906)
and the modulation of subcortical reflexes by higher centers to
maximize fitness (Sechenov, 1863), an alternative explanation for
the larger magnitude of the BR elicited by median nerve stimulation
is the greater proximity of the upper limb to the face compared to
the lower limb. It makes intuitive sense that stimuli closer to the
face have a stronger potential to harm the eye and elicit a larger BR.

5.1. Hand-blink reflex magnitude depends on top-down cortical
modulation

The size of the BR may indicate how the nervous system implic-
itly estimates the potential to harm of the eliciting stimulus (Sambo
et al., 2012a, 2012b; Bufacchi et al., 2016) (see also section 5.4).
Among the many factors determining the potential to harm of envi-
ronmental stimuli, the spatial proximity of stimuli to the eye is
straightforward to modulate, especially using the HBR, because a
change of the position of the stimulated hand in egocentric coordi-
nates does not alter the intensity of the sensory input eliciting the
BR. In contrast, applying, e.g., acoustic stimuli to elicit an auditory
BR would present the major drawback of different stimulus inten-
sities when the stimulus is in different spatial locations. A seminal
experiment that has been now reproduced by several research
groups demonstrated an HBR double in magnitude when the stim-
ulated hand was close to the face rather than far away (Fig. 6A)
(Sambo et al., 2012b; Sambo and lannetti, 2013). Importantly, this
enhancement occurs irrespectively of whether the proximity of
the hand to the face was altered by changing the position of the
arm or by rotating the head while keeping the arm position con-
stant. Thus, the HBR enhancement is not due to changes in periph-
eral input (Sambo et al., 2012b) nor to the effort necessary to keep
the hand close to the face (but see Bufacchi et al., 2019). These
results indicate a remarkably fine top-down modulation of the
HBR by higher-order cortical areas. This modulation could take
place at different levels of the reflex circuit: presynaptic disinhibi-
tion of primary Ap neurons, specific facilitation of the HBR interneu-
rons in the lower medulla, or general facilitation of facial
motoneurons. There is empirical evidence that neither the N20
component of median nerve SEPs nor the BR elicited by electrical
SON stimulation are affected by hand position (Sambo et al.,
2012b). These observations rule out a disinhibition of the afferent
lemniscal pathways (i.e., in the cuneate nucleus, before Ap afferents
from the hand enter the brainstem circuits subserving the HBR) or
the facial motoneurons. Rather, they provide compelling evidence
that the brainstem circuits mediating the HBR undergo tonic and
selective top-down modulation from higher order cortical areas.

5.2. A face-centered map of blink reflex magnitude

While most studies investigated the HBR magnitude as a func-
tion of two stimulus positions (typically ‘far’ and ‘near’ the face),
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Fig. 6. The magnitude of the blink reflex elicited by median nerve stimulation (hand-blink reflex, HBR) is modulated by the proximity between the stimulated hand and the
face. A: the top waveforms are the rectified group average HBR for the hand position”far” (blue) and “near” (red). The bottom waveform expresses the ANOVA F-value for each
time point, in the significant time windows (P < 0.05). The right panel shows a consistent effect across participants (single-subject HBR magnitudes are expressed as area
under the curve, AUC) (modified from Sambo et al. (2012b)). B: geometric modelling of HBR strength as a function of stimulus position. Plots are a combined description of the
experimental data with the best-fitting geometric model. Measured HBR data are represented as concentric circles located where the measurements were taken. Background
color represents the HBR magnitude predicted by the best-fitting geometric model. Line graphs at the side of each color plot show HBR magnitudes along each axis, together
with the best-fitting geometric model (blue line). HBR magnitude increases monotonically with the proximity between the stimulus and the face, and it is symmetrical on the
axial plane, but asymmetrical along the rostro-caudal axis, with stronger HBR elicited by stimuli occurring above than below the face (from Bufacchi et al. (2016)).

when a larger number of stimulus positions are explored it
becomes possible to use geometrical models to derive fine-
grained topographical maps of BR strength (Fig. 6B). This modelling
approach allows testing a number of physiological assumptions on
why the BR increases as a function of hand position. Specifically,
when the hand position covers large portions of space, the HBR
magnitude reflects the probability of the face being hit by a threat.
These maps show that the HBR increases monotonically with the
proximity between the stimulus and the face (Bufacchi et al.,
2016). Importantly, while HBR strength is symmetrical on the axial
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plane, it is elongated asymmetrically along the rostro-caudal axis,
with stronger HBR elicited by stimuli occurring above than below
the face (Fig. 6B). Furthermore, HBR modulation when systemati-
cally altering body posture, i.e., with participants being upright,
supine, and lying sideways, suggests that the nervous system
adjusts the strength of the BR taking gravity into account when
estimating the probability of being hit by a threat (Bufacchi and
lannetti, 2016). Indeed, the vertical asymmetry of the HBR magni-
tude field is invariant to body posture: stimuli coming from above
in earth-centered coordinates always result in stronger HBR
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compared to stimuli at the same distance from the face but coming
from below. Thus, the brain takes gravitational cues to automati-
cally update threat value in an adaptive mechanism that accounts
for the simple fact that objects fall down.

5.3. What does the hand-blink reflex enhancement truly reflect?

The clear dependence of HBR modulation on proximity between
the stimulus and the face has induced many authors to consider
the HBR modulation an index of how the nervous system repre-
sents the space surrounding the body (“peripersonal space”). How-
ever, there is ample evidence that the HBR is strongly influenced
also by factors other than proximity, and in many instances the
HBR is largely modulated even when the stimulus position with
respect to the face remains constant. One example is the above-
mentioned effect of gravity: the magnitude of the HBR elicited by
a stimulus at the same Euclidean distance from the face changes
when the subject posture is altered (Bufacchi and Iannetti, 2016).
Several other non-spatial factors affect the HBR magnitude: the
presence of a screen between the stimulated hand and the eye
(Sambo et al., 2012a), changes in the probability or control of stim-
ulus occurrence (Sambo et al., 2012a; Versace et al., 2020 - see also
section 6), whether the stimulus is approaching or receding
(Wallwork et al., 2016; Bisio et al., 2017), and the presence of other
moving and static environmental objects (Fossataro et al., 2016;
Somervail et al., 2019). It is therefore incorrect to simply relate
HBR magnitude to proximity and peripersonal space, as we and
others have done in the past (Sambo and Iannetti, 2013;
Wallwork et al., 2017; Bisio et al., 2017). This unjustified primacy
of proximity shows the issues consequent to interpreting HBR
modulations in spatial terms: given that many factors other than
proximity can cause the observation that the HBR magnitude is
increased, interpreting such HBR increases as reflecting changes
in how the nervous system represents stimulus location in egocen-
tric coordinates is likely incorrect. For a more exhaustive discus-
sion on the topic, we refer to Bufacchi and lannetti (2018, 2021).

5.4. Hand-blink reflex modulation reflects the potential of the stimulus
to harm the eye rather than its spatial configuration

Thus, HBR magnitude fields do not reflect representations of
stimulus configuration in face-centered coordinates. Rather, they
are better understood as mappings onto behavior. Specifically,
HBR magnitude represents a case of a class of neural and behav-
ioral responses that reflect the value of actions aiming to create
or avoid contact between objects and the body (for an extensive
discussion on the topic and on the different definitions given
(and often interchangeably used) to the term “peripersonal space”
see Bufacchi and lannetti (2018, 2021)).

The BR is a prototypical contact action, as it aims to avoid con-
tact between a dangerous stimulus and the eye through the inter-
position of the eyelid; thus, it is behaviorally useful that its
magnitude depends on the likelihood that a stimulus hits the
eye, a likelihood that, in turn, depends on the proximity between
the stimulus and the face (although by no means only on the prox-
imity) (Sambo et al., 2012a; Bufacchi et al., 2016). The action value
perspective (i.e., that the HBR magnitude reflects the output of a
neural estimate of how necessary it is to blink in a given condition
(Bufacchi and lannetti, 2018, 2021)) parsimoniously explains why
factors other than proximity affect HBR magnitude. This is in strik-
ing contrast to previous interpretations, which often considered
non-proximity effects as interesting exceptions to the spatial prox-
imity rule - but nevertheless interpreted in spatial terms, as indi-
cating, for example, that “far becomes near” and that the “space
representation is dynamically shaped” by the contingent factors
affecting the HBR (e.g., Bisio et al., 2017). Finally, the action value
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perspective allows speculating on the cortical structures exerting
the top-down modulation of HBR-specific circuitry in the brain-
stem. Parieto-premotor circuits describe the relevance of potential
actions within the interactive behavior framework (Cisek and
Kalaska, 2010), and precisely in these areas there are bimodal
visuo-tactile neurons with visual body-part centered receptive
fields (Clery et al., 2015). Also, in addition to the HBR, many behav-
iors whose magnitude displays a body-part centered field have
been linked to neural activity occurring within this loop (Brozzoli
et al.,, 2014). It is therefore likely that the parietal and premotor
cortices are the cortical sites where the value of potential actions,
including the HBR, are specified.

6. Self-triggering of blink reflexes (Viviana Versace)

The excitability of brainstem circuitries mediating defensive
blinking in response to abrupt sensory inputs is continuously mod-
ulated in part by the estimated threat that these inputs pose to the
eyes (see section 5). In fitting with the idea that control over a
stimulus reduces its threat value and self-induced sensory pertur-
bations render reflexive protective eye-closure less necessary, few
authors have shown that when BRs are elicited by self-stimulation,
the R2 response is reduced at the same time that the R1 response is
potentiated (Ison et al., 1990; Meincke et al., 1992, 2003; Leis et al.,
1993; Versace et al., 2020, 2023). However, the exact physiological
mechanisms that underlie these effects are still unclear.

The effect of self-inflicted unpleasant stimuli has rarely been
studied in the context of brainstem reflexes other than the BR to
SON stimulation, with some examples for auditory startle reactions
(Kawachi et al.,, 2014), and somatosensory BR following high-
intensity median nerve stimulation (the HBR) (Versace et al,,
2021). Some spinal reflexes are similarly depressed by self-
stimulation, e.g., the cutaneous flexor reflex response (Young,
1973), the stretch reflexes (Rothwell et al., 1986), and cutaneous
reflexes evoked during human walking (Baken et al., 2006;
Hoogkamer et al., 2015).

Volitional activity, sensory inputs, and motivational and emo-
tional factors may all influence reflexes (Sechenov, 1863) by gain-
ing access to polysensory integrative brainstem centers, where
they may modify the excitability of reflex pathways (Fig. 5).

Both self-produced sensations and self-generated motor actions
(e.g., those resulting in delivery of self-directed stimuli) are simi-
larly “attenuated”. Based on an internal cognitively mediated for-
ward model, the act of self-eliciting a stimulus brings about an
efference copy of the motor command. This efference copy is
thought to reflect the predicted sensation of the self-initiated
motor act, which may not only lead to sensory attenuation but also
to inhibition of reflex responses.

Not all findings related to sensory attenuation, however, can be
explained by forward models. Hence, another theoretical frame-
work, i.e., predictive processing, has more recently been developed
(Kiepe et al., 2021). This model suggests sensory attenuation to be
a result of attention orienting based on predictions that are not
necessarily dependent upon motor behavior. Predictive processing
states that we constantly make use of prior information, either
self- or externally generated, in order to create predictions about
upcoming changes in sensory input in the form of a generative
model. In this framework, only the predictability of a stimulus
determines its potential to elicit sensory attenuation. This theory
is again unable to explain all the evidence, leaving room for hybrid
models, which combine the efference-based forward model with a
global predictive mechanism.

Several studies have shown that self-administration of a moder-
ately painful stimulus, relative to the administration of the same
stimulus by external agents, reduces the perceived intensity and
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Fig. 7. Neuronal network model of the blink reflex (BR). The principal sensory
nucleus (PSN) mediates the R1 component, and the spinal trigeminal nucleus (STN)
mediates the R2 component of the BR. Trigeminal non-nociceptive and thick-
myelinated Ap afferents project on low-threshold mechanoreceptive (LTM) neurons
of the PSN generating the R1 reflex of the orbicularis oculi muscle (OOc) via motor
neurons of the facial nerve (VII). Trigeminal tactile A and nociceptive AS afferents
converge onto common wide-dynamic-range (WDR) interneurons of the STN
generating the R2 reflex via motor neurons of the VII. Noxious stimulation to
remote body sites such as the extremities, activate multireceptive neurons of the
subnucleus reticularis dorsalis (SRD) inhibiting WDR neurons and, hence, the R2
reflex responses. Additionally, the R2 reflex may be evoked or modulated by AB
fiber input on LTM neurons of the STN or noxious input from A$ afferents on
nociceptive specific neurons (NS) of the STN.

unpleasantness (Wang et al., 2011; Muller, 2012) and modulates
neural activity in the anterior cingulate cortex (Mohr et al., 2005;
Wang et al, 2011), primary somatosensory cortex (Helmchen
et al., 2006; Wang et al., 2011), posterior insula and prefrontal cor-
tex (Mohr et al., 2008), all areas related to saliency detection
(Mouraux and lannetti, 2009; Mouraux et al., 2011). Such a reduc-
tion in perceived unpleasantness was also observed for self-
induced BRs (Meincke et al., 1992; Versace et al., 2023).

Interestingly, self-stimulation and observation of stimulus trig-
gering suppressed the R2 component, despite the stimulation
probe being close to the person’s face, a condition known to facil-
itate R2 (Versace et al., 2020). Indeed, the perception of a threat
near the face potentiates R2 despite unchanged properties of the
SON stimuli, while self-stimulation can overrule this effect.

A peri-liminal (barely perceptible) sensory stimulus, which
does not produce a response by itself, delivered prior to the
reflex-eliciting SON-stimulus at appropriate ISIs facilitates R1 and
dramatically suppresses R2 (Rossi and Scarpini, 1992) (see section
4, Fig. 5). The apparently similar modulation of R1 and R2 induced
by a prepulse and by self-stimulation suggests the possibility of a
common mechanism (Versace et al., 2020). However, certain dis-
parities led to refute this assumption (Versace et al., 2023): recent
experiments demonstrated that prepulse effects are evident in a
time window ranging from 40 to at least 500 ms ISIs with a max-
imum effect at ISI 100 ms between prepulse and SON stimulus,
concurring with a time-locked mechanism of presynaptic inhibi-
tion at the brainstem level. In contrast, R2 suppression and R1
facilitation due to self-stimulation of SON already occur in a 2-s
period before the act of self-triggering (Versace et al., 2023), sug-
gesting a tonic “cognitive” tuning of the excitability of brainstem
circuits.

While a top-down facilitatory influence of the “readiness to act”
on the excitability of the neurons in the pontine facial nucleus (re-
sponsible for R1) is certainly not easy to explain from a physiolog-
ical point of view, it seems easier to explain a top-down inhibitory
influence on the pontomedullary interneurons (responsible for R2)
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that regulate the magnitude of protective blinking, according to
ongoing needs.

The excitability of the respective interneurons in the brainstem
reticular formation is crucial for the size of the BR to SON stimula-
tion, or of the startle eyeblink, as they can rapidly tune their
excitability depending on descendent projections from higher-
order areas (Sambo et al., 2012b; Valls-Solé, 2012; Kawachi et al.,
2014). The higher-order control mediating “readiness to act” and
the “sense of agency” may share corticofugal modulatory influence
on the brainstem neural circuits responsible for protective eye clo-
sure. A concrete example is the difference in blinking when admin-
istering eye drops oneself versus having someone else doing it.
“Knowing that you are not posing a threat to your eyes” does not
require to close them promptly.

7. The blink reflex and pain (Jens Ellrich)
7.1. Functional anatomy and physiology of the trigeminal system

Trigeminal afferent nerve fibers project via the trigeminal gan-
glion to the mesencephalic nucleus, the PSN, the interstitial
nucleus of the spinal trigeminal tract, and the STN in the brainstem
(Clara, 1942; Olszewski, 1950; Phelan and Falls, 1989; Shults,
1992; Nieuwenhuys et al., 2008). The STN, extending from the pons
to the upper cervical spinal cord, is divided into subnucleus oralis,
interpolaris, and caudalis (Olszewski, 1950; Shults, 1992). Based
upon the responsiveness to mechanical stimulation applied to
the orofacial skin, secondary sensory neurons within the subnuclei
of the STN are classified in low-threshold mechanoreceptive (LTM),
WDR, and nociceptive-specific (NS) neurons (Willis, 1985; Sessle
et al., 1986; Ellrich and Messlinger, 1999). Whereas LTM and
WDR neurons respond to light tactile stimuli via Ap fiber afferents,
only WDR neurons increase discharge rates when stimulus inten-
sity becomes noxious and involves afferent input from Ad and C
fiber afferents. NS neurons do not respond to innocuous tactile
input but only to noxious stimuli via nociceptive afferent nerve
fibers. Nociceptive neurons, i.e., WDR and NS, were localized in
the interstitial nucleus of the spinal trigeminal tract and in all sub-
nuclei of the STN indicating their involvement in trigeminal noci-
ception and pain processing (Hayashi et al., 1984; Sessle et al.,
1986; Hayashi and Tabata, 1989; Dallel et al., 1990). Studies in
patients with circumscribed brainstem lesions confirmed that
nociceptive processing within the trigeminal system involves these
brainstem nuclei (Ongerboer de Visser and Kuypers, 1978; Kimura
et al., 1994; Hopf, 1994; Valls-Solé et al., 1996; Jerath and Kimura,
2019). Reflex pattern alterations in patients with solitary and cir-
cumscribed brainstem lesions enabled inferring which brainstem
nuclei are part of the BR arcs, allowing for topodiagnosis in clinical
neurophysiology. The interneurons are located in the PSN for the
R1 and in the medullary STN for the R2 components of the electri-
cally elicited BR (Fig. 7). The location of reflex interneurons was
confirmed by reflex studies in patients with small circumscribed
brainstem lesions (Hopf, 1994; Cruccu et al., 2005). A unilateral
ischemic lesion in the dorsolateral medulla, the so-called Wallen-
berg syndrome, caused an abnormal R2 in more than 90 % of
patients, while the R1 remained unchanged. Stimulation on the
healthy side elicited a normal reflex pattern (Kimura, 2013;
Valls-Solé et al., 1996).

7.2. Afferent inputs and thresholds for elicitation of the blink reflex

R1 and R2 can be elicited by phasic innocuous mechanical or
electrical stimuli indicating that these components are mediated
by thick-myelinated AR afferents (Kimura, 2013; Ellrich and
Treede, 1998). Average electrical thresholds with stimulation of
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the SON at the supraorbital foramen via two identical surface elec-
trodes utilizing square wave pulses with a duration of 200 ps in
healthy volunteers were reported to be 2.2 mA for detection (touch
sensation), 2.4 mA for R2, and 5.3 mA for R1. These thresholds are
far below the reported pricking pain threshold of 16.2 mA indicat-
ing the non-nociceptive origin of R1 and R2 evoked by this com-
mon type of electrical stimulation (Ellrich and Treede, 1998). A
fiber afferents project to LTM and WDR neurons. Thus, the R1 is
mediated by afferent input from AB fibers to LTM neurons of the
PSN that does not contain any WDR neurons (Fig. 7). Consequently,
Ap afferents may project to LTM and/or WDR neurons of the STN
generating the R2 reflex (Fig. 7). If WDR neurons of the STN are
involved in the R2, noxious stimulation should be able to evoke
the reflex as well.

Selective activation of trigeminal AS fiber nociceptors of the
forehead by heat pulses of an infrared laser causing a pricking
painful sensation elicits a BR (Ellrich et al., 1997; Romaniello
et al., 2002). This noxious phasic stimulus evokes a bilateral BR
with an onset latency of approximately 70 ms following trigeminal
stimulation. Considering the nociceptor activation time of about
40 ms (transduction), the onset latencies of the electrically evoked
R2 with innocuous intensity and the laser-evoked BR correspond
very well. Notably, this component is the earliest one, no compo-
nent corresponding to the electrically evoked R1 is elicited by nox-
ious heat (Ellrich et al., 1997; Romaniello et al., 2002).

The BR can be evoked by electrical rectangular pulses applied by
a custom-made concentric electrode to the forehead (Kaube et al.,
2000). This electrode consists of a small central cathode (diameter
® 1 mm) and a large external ring anode (inner @ 8 mm, outer @
24 mm). With stimulus intensities below 1 mA but high current
density, this electrode allows preferential activation of cutaneous
nociceptive Ad-fibers (Bromm and Meier, 1984; Kaube et al,
2000). This kind of noxious electrical stimulation of supraorbital
nociceptive afferents evokes R2 reflexes with latencies of approxi-
mately 42 ms. Local anesthesia of the forehead skin is able to sup-
press the BR confirming its mediation by nociceptive skin afferents
(Kaube et al., 2000).

Elicitation of R2 by both noxious stimulation techniques con-
firms the involvement of nociceptive afferent input in the R2 reflex
arc. Different reflex arcs are conceivable (Fig. 7): (1) Discrete affer-
ent reflex arcs: electrically or mechanically activated low-
threshold afferent input via AB fibers projects onto LTM neurons
and thermally or electrically evoked nociceptive input projects
via A8 afferents onto NS neurons; in this case, the non-
nociceptive and the nociceptive R2 are mediated by different
interneurons. (2) Both innocuous and noxious inputs converge
onto common WDR interneurons, i.e., both reflexes share the same
interneurons. If afferent input from thick-myelinated, non-
nociceptive AB fibers and thin-myelinated, nociceptive A$ fibers
converge on the same WDR interneurons, homotopic subthreshold
noxious stimulation should facilitate the R2 reflex elicited by low-
intensity electrical stimuli corresponding to the phenomenon of
spatial summation.

7.3. Blink reflex modulation by noxious stimuli

When a conditioning noxious heat pulse, which does not evoke
any BR, is homotopically applied to the left forehead preceding by
75 ms an innocuous BR-eliciting electrical stimulus to the SON, the
R1 remains unchanged while the R2 is facilitated by about 30 %
(Ellrich et al., 1998). These results suggest that both afferent
inputs, the electrically evoked A input and the heat evoked A8
input, facilitate the R2 reflex by spatial summation (Fig. 7). These
data confirm the mediation of the R2 by WDR neurons and of the
R1 by LTM neurons. The simultaneous occurrence of R1 and R2
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components may help to differentiate non-nociceptive from noci-
ceptive processes within the trigeminal system.

If WDR neurons significantly contribute to the signal processing
of R2 after weak electrical stimulation, the BR should be inhibited
by activation of the system of diffuse noxious inhibitory controls.
Nociceptive afferent input from anywhere on the body activates
nociceptive neurons in the subnucleus reticularis dorsalis (SRD)
of the brainstem causing inhibition of WDR neurons in the spinal
cord and the trigeminal system (Villanueva et al., 1996; Ellrich
and Messlinger, 1999; Le Bars, 2002). Thus, if the R2 is mediated
by WDR neurons, it should be suppressed by remote painful stim-
uli via diffuse noxious inhibitory controls. Actually, the BR elicited
by weak electrical stimuli is modulated by noxious conditioning
heat applied to the extremities: the R2 decreased while the R1
remains unchanged (Ellrich and Treede, 1998). This inhibition of
the R2 by remote noxious heat indicates not only an involvement
of WDR neurons in the generation of the Ap fiber-mediated R2
but also a convergence of Ap and A$ afferents onto common
WDR neurons within the medullary STN (Fig. 7). Constancy of R1
seems to confirm the mediation of this response by pontine LTM
neurons of the PSN. Nociceptive R2 BRs elicited by intra-
epidermal or superficial electrical stimulation were inhibited by
remote cold or heat stimulation of the hand or the forearm, respec-
tively, in a similar manner (Drummond et al., 2018; Kinukawa
et al., 2021).

In summary, the “traditional” electrically evoked BR following
SON stimulation is mediated by trigeminal AB fibers that project
to LTM and WDR neurons of the PSN and the STN. There is evi-
dence, however, that nociceptive neurons are involved in the BR
as well. The R2, but not the R1, is elicited by selective or highly
preferential nociceptive afferent input from infrared laser pulses
or high current density electrical stimulation. R2 facilitation by
homotopic noxious input and R2 inhibition by remote noxious heat
indicate considerable involvement of multireceptive WDR neurons
of the STN. Trigeminal nociception can therefore be investigated by
applying this brainstem reflex. According to the investigation of
spinal nociception by cutaneomuscular reflexes, pathophysiologi-
cal mechanisms of central sensitization, hyperalgesia, allodynia
and referred pain can be investigated in the trigeminal system by
using the BR (Kofler and Halder, 2014; Pillai et al., 2020; Khan,
2021; Thoma et al., 2022). An experimental study in humans
addressed the convergence of meningeal and facial input on the
STN, probably a condition for referred pain, and demonstrated in
healthy volunteers the facilitation of the R2 by raising intracranial
pressure (Ellrich et al., 1999). The R2 qualifies for exploring noci-
ception and pain in the trigeminal system and thus may be an
appropriate model to test analgesic drug effects on trigeminal
nociception.

8. The blink reflex and other brainstem reflexes under general
anesthesia (Maria J. Téllez)

Virtually all functional circuits of the CNS are subject to synap-
tic modulation and plasticity by pharmacologic agents like anes-
thetic drugs. Remarkably, how and where anesthetic drugs
disrupt synaptic networks remains to be determined. The classic
view predicates that anesthetic drugs bind to protein receptors
extensively distributed in the CNS, inducing global synaptic sup-
pression. A recent proposition suggests that dedicated axonal path-
ways and specific brainstem locations may convey a suppressive
signal to remote parts of the CNS (Sukhotinsky et al., 2016). The
BR has been for a long time used to identify the transition from
patient responsiveness to unresponsiveness after induction of gen-
eral anesthesia and to assess the depth of anesthesia maintenance.
The BR, elicited with a single electrical stimulus over the SON,
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Fig. 8. A. Blink reflex (BR) elicited in a patient under total intravenous anesthesia (TIVA, two trials shown). The BR was elicited by applying a short train of 9 electrical pulses
(2 ms inter-stimulus-interval, at 36 mA intensity) to the supraorbital nerve, ipsilateral to the recorded side (Deletis et al., 2009). B. Laryngeal adductor reflex (LAR) elicited in a
patient under TIVA (two trials shown). The LAR was elicited by applying a short train of 3 electrical pulses (1-2 ms inter-stimulus-interval, at 9 mA intensity) applied to the
laryngeal mucosa contralateral to the recording side (Sinclair et al., 2017b). C. Masseter H reflex elicited in a patient under TIVA. The first trial was elicited by stimulating the
third branch of the trigeminal nerve (under the zygomatic arc) with a single pulse at a slightly higher intensity than the second to show M/H and isolated H, respectively
(Ulkatan et al., 2017). D. Trigeminal-hypoglossal reflex (THR) elicited in a patient under TIVA (two trials shown). The THR was elicited by stimulating the third branch of the
trigeminal nerve (under the zygomatic arc) with a short train of 3 electrical pulses at 30 mA.
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exhibits a dose-dependent relationship with infusion pumps and
volatile anesthetic agents, gradually reducing the BR R1 and R2
amplitudes until abolishing both responses in a few minutes
(Marelli and Hillel, 1989; Mourisse et al., 2004).

Nevertheless, several methodologies and anesthetic routines
have been successfully developed to elicit and sustain brainstem
reflexes under general anesthesia for intraoperative monitoring
guidance in complex surgeries. Recording brainstem reflexes under
general anesthesia have significantly advanced how various surgi-
cal procedures are monitored. It is now possible to monitor cranial
nerves’ sensory and motor functions, pathways, and nuclei within
the brainstem. In some cases, the elicitation of a brainstem reflex
requires facilitation by stimulating sensory afferents with a short
train of electrical stimuli. In other cases, we hypothesize that the
effect of anesthetic drugs may facilitate the elicitation of brainstem
reflexes. There is evidence that propofol-induced unconsciousness
disrupts the signaling between cortical and brainstem structures,
thereby modifying the salience network and its connectivity with
the brainstem (Guldenmund et al., 2013).

This section summarizes the methodologies and behavior of
brainstem reflexes elicited under general anesthesia, each present-
ing diverse susceptibility to anesthetic modulation.

8.1. General anesthesia

Propofol, etomidate, and barbiturates are the most common
agents to induce general anesthesia. After induction, the patient
loses consciousness and the oculocephalic and corneal reflexes at
approximately 10 to 30 seconds. As anesthesia induction occurs,
the patient presents muscle atonia and apnea, suggesting that
these GABAergic agents disrupt synapses at the brainstem level
where arousal and respiratory centers are located. A decrement
in cortical activity follows, and the flow of communication
between the brainstem, subcortical and cortical pathways is also
interrupted (Brown et al.,, 2010, 2011; Feldman and Del Negro,
2006).

The primary goals of general anesthesia maintenance are pro-
viding an adequate level of unconsciousness and antinociception
to the patient.

Maintaining general anesthesia with volatile halogenated anes-
thetics (isoflurane, desflurane, and sevoflurane) profoundly affects
brainstem reflexes (Mgller and Jannetta, 1986). For instance, at a
median alveolar concentration > 1 (Eger, 1974), the BR and the
laryngeal adductor reflex (LAR) are not elicitable. Additionally,
there is a dramatic delay in the reappearance of the reflexes,
despite the end-tidal anesthetic concentrations returning to zero
by mass spectroscopy (Marelli and Hillel, 1989). At a median alve-
olar concentration < 1, both reflexes have proven to be elicitable,
presenting smaller amplitude (Deletis et al., 2009; Sinclair et al.,
2017a). The mean or median alveolar concentration is not given
in specific units since it represents a ratio or proportion of the con-
centration of anesthetic gas to other factors (Eger, 1974).

Total intravenous anesthesia (TIVA) is a more appropriate
preparation for maintaining anesthesia if brainstem reflexes have
to be monitored during surgery. TIVA incorporates an infusion
pump with propofol (100-300 pg/kg/min) and opioids (remifen-
tanil at 0.1-0.3 pg/kg/min, fentanyl at 1-2 pg/kg/hr, or sufentanil
at 0.1-0.3 pg/kg/hr) adjusted throughout surgery according to
the patient’s anesthesia depth.

8.2. The blink reflex elicited under general anesthesia

A single electrical stimulus applied to the SON does not elicit the
BR in fully anesthetized humans, except if the trigeminal or facial
nerves are hyperexcitable or the patient is only slightly anes-
thetized (Mpgller and Jannetta, 1986; Sindou et al., 1994;
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Fernandez-Conejero et al., 2012). Instead, a short train of stimuli
(3-9 pulses, 2 ms ISI) is needed to overcome the inhibitory action
of anesthetics (Deletis et al., 2009).

The short train of stimuli was initially introduced to elicit
motor-evoked potentials in anesthetized humans (Taniguchi
et al.,, 1993). The repetitive discharge of electrical current applied
to cortical neurons is known to increase spinal cord excitability
(Phillips and Porter, 1964). In analogy, building-up of facial
motoneuron excitability is likely effective for BR elicitation under
general anesthesia.

The elicitability of the BR varies from 80 to 90 % of the patients
when a subject is fully anesthetized (Deletis et al., 2009; Ying et al.,
2021; Aydinlar et al., 2022). Unlike awake subjects, only the
oligosynaptic R1 component of the BR is present (Fig. 8A). During
surgery, the BR can help detect impending injuries upon the
trigeminal and facial nerves and upper-mid pons. BR changes dur-
ing posterior fossa surgery strongly correlate with the status of
facial nerve motor function (Aydinlar et al., 2022) and trigeminal
nerve sensory function (Ying et al., 2021) at postoperative and
third-month evaluations.

8.3. Differences between the blink reflex and other brainstem reflexes
obtained during general anesthesia

Other brainstem reflexes elicited under general anesthesia
include the LAR, the H reflex of the masseter muscle, and the
trigeminal-hypoglossal reflex (THR).

The LAR is a vagal, life-sustaining protective reflex that shields
the lower airway from inhaled foreign bodies (Sasaki et al., 2003;
Sinclair et al., 2017b). The LAR is evoked by applying an electrical
stimulus in the supraglottic mucosa, utilizing surface electrodes
placed on an EMG-endotracheal tube (routinely used intra-
operatively by endocrine neck surgeons) (Sinclair et al., 2017b). It
can be recorded bilaterally from vocal cord adductor muscles (thy-
roarytenoid and lateral cricoarytenoid), showing short-latency R1
and long-latency R2 components, which, in contrast to the BR,
are both bilateral regardless of the stimulated side (Fig. 8B). These
observations have been made both, in awake subjects (Tellez et al.,
2018) and in patients under general anesthesia (Sinclair et al.,
20174, 2018).

Unlike the BR R1, which to date has no known physiological
function, a recent study provided evidence that the bilateral LAR
R1 response is the electrical event that initiates vocal cord adduc-
tion (Tellez et al., 2021). In contrast, eyelid closure in humans pre-
dominantly relies on the BR R2 component. Thus, the BR and the
LAR diverge from each other at this critical point. To effectively
maintain visual surveillance of the surroundings, the human brain
can supersede the response of closing the eyes when circum-
stances demand it. Hence, the properties of the bilateral, long-
latency BR R2 component are highly modulated by supratentorial
influences and conscious state.

Conversely, the larynx must have a short-latency, reflex mech-
anism that can override any other voluntary action to protect the
human airway. In this line, conditioning protocols in awake
humans have shown that the short-latency LAR R1 overrides
phonation, respiratory, and swallowing tasks. On the contrary,
the LAR R2 response is highly modulated and decreases during
multitasking, such as swallowing, respiration, and phonation
(Barkmeier et al., 2000; Kearney et al., 2005; Henriquez et al.,
2007; Ludlow, 2011). Even more, the ipsi- and contralateral LAR
R1 components can be elicited at all anesthesia depths if TIVA is
used in 100 % of patients. These findings could have significant
implications in patients with a high risk of aspiration, undergoing
sedation or anesthesia, provided the LAR R1 response contributes
to airway protection by initiating vocal cord closure.



M. Kofler, M. Hallett, G.D. Iannetti et al.

The performance of the BR and the LAR diverges under general
anesthesia (Ambalavanar et al., 2002). A likely explanation relates
to the pyramidal projections to the STN that facilitate the sensory
transmission of the BR through the brainstem circuits (Kimura,
1974; Chase et al., 1980; Berardelli et al., 1983). Anesthetic agents
conceivably impair these facilitatory pyramidal projections, mak-
ing the BR less elicitable than the LAR under general anesthesia.
The lateral tegmental field of the reticular formation carries the
polysynaptic R2 component of the BR (Kimura and Lyon, 1972;
Ongerboer de Visser and Kuypers, 1978; Aramideh et al., 1997)
and likely the R2 component of the LAR (Sessle, 1973; Tanaka
et al., 1995; Ambalavanar et al., 2004; Adachi et al., 2010) to the
corresponding motor nuclei (facial and ambiguous, respectively).
However, the BR R2 is abolished in deeply anesthetized subjects
in contrast to the LAR R2 response. N-methyl-D-aspartate (NMDA)
receptors, essential targets of intravenous anesthetics that enhance
GABA and reduce NMDA activation, may play a role in this distinct
presentation of the R2 between BR and LAR. NMDA receptors are
involved in respiratory reflexes in the brainstem, modulating the
medullary respiratory network (Pierrefiche et al., 1994; Haji
et al, 1998). Classically conditioned eyeblink responses
(Kishimoto et al., 1997) and elicitation of the LAR R2 response
depend on NMDA receptor activation (Ambalavanar et al., 2004).

In addition to the BR, two other trigeminal-elicited brainstem
reflexes have been investigated under general anesthesia. The
homonymous and heteronymous H reflex in the masseter and tem-
poralis muscles, respectively, have been recorded in patients under
TIVA (Ulkatan et al., 2017) (Fig. 8C), despite the lack of classic facil-
itation by the teeth clenching. The THR or jaw-tongue reflexes
coordinate the tongue’s position in the mouth relative to jaw
movement. Rarely documented in awake subjects, they were suc-
cessfully recorded under general anesthesia (TIVA) with an elic-
itability of 82.1 % of the patients (Mirallave Pescador et al., 2022)
(Fig. 8D). Interestingly, these authors elicited the THR in four
patients by SON stimulation (V1 branch) while simultaneously
evoking the trigeminal BR, probably due to trigeminal hyperex-
citability secondary to offending vascular structures over the
nerve. In a more appealing proposition, we hypothesize that a
modified salience network (Guldenmund et al., 2013), deprived
of higher neuron control input due to anesthetic drugs, may
uncover how integrating sensory information across several inputs
produces excitatory and inhibitory responses across different
effectors through the reticular formation. Additional neurophysio-
logical evidence of a link between trigeminal and hypoglossal net-
works in humans under anesthesia was provided by another group
(Szelenyi and Fava, 2022). Trigeminal-hypoglossal connections are
known to exist following two possible pathways: a monosynaptic
connection between neurons of the mesencephalic trigeminal
nucleus and hypoglossal motoneurons (Zhang et al., 2001, 2003)
and through a polysynaptic network relaying on pontomedullary
structures of the reticular formation (Tomioka et al., 1999; Zhang
et al.,, 2003; Dong et al., 2005; Luo et al., 2006; Urban, 2015).

In summary, the ability to elicit and monitor brainstem reflexes
during surgery has practical implications for improving neurosur-
gical outcomes. It also opens new opportunities for understanding
the underlying physiology of these brainstem reflexes. The disrup-
tion of signaling between modulating supranuclear structures and
the brainstem by anesthetic drugs may facilitate the examination
of brainstem reflexes rarely recorded in awake subjects.

9. Concluding remarks and outlook
BR testing has been part of the neurophysiological armamentar-

ium for over 50 years. Its topodiagnostic value is well established.
Being a brainstem reflex, however, puts the BR in a strategically
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challenging position: on the one hand, the BR serves to reflect
some aspects of brainstem functioning, but on the other hand, its
circuitry is also subject to a multitude of afferent and efferent
influences. Understanding the ways and mechanisms of BR modu-
lation is the basis to understand human brainstem physiology and
may serve to open new diagnostic avenues in clinical neurophysi-
ology. Some of these aspects have already arrived in, or are on the
verge of, clinical practice and are described and discussed in part 2
of this review (Gunduz et al., submitted).
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