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1.  INTRODUCTION

fMRI has revolutionized how we study the brain by pro-

viding a noninvasive way to measure neural activity on a 

millimeter scale. This high spatial resolution allows for 

comparing blood oxygenation level-dependent (BOLD) 

activity within and between tasks or stimuli, helping 

uncover the functional properties of local neural circuits. 

Task-based fMRI studies typically use forward inference 

to identify task or stimulus-related brain areas by cor-
relating each voxel’s activation time course with the tem-
poral profile of the task. A contrast map is generated by 
differencing the brain activity of different tasks, which 
produces task or stimulus-specific localized blobs when 
thresholded. However, this analysis assumes that only the 
identified blobs contain reliable task-specific information 
(Hanson, 2022). In this report, we challenge this estab-
lished assumption by revealing that stimulus-specific  
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Fig. 1.  Generation of decoders to assess the presence of stimulus-related signals. Voxel-wise paired t-tests were 
performed on brain activity maps using a stimulus of interest (e.g., noxious stimulus eliciting pain) and no interest (e.g., 
touch). These t-statistics were then binned into deciles based on their absolute magnitudes. The gray line depicts the 
standard minimum threshold used to dichotomize brain regions that discriminate between stimuli (univariate “statistical 
significance” at α = 0.05, uncorrected for multiple comparisons). Each decile of t-statistics and their locations in the brain 
became a decoder. On the bottom right, we show examples of these decoders for the 10th (comprising large blobs) and 
1st deciles (scattered voxels). Although the deciles were derived using the absolute value of t-statistics, the decoders 
incorporated the t-statistics’ signs. We then calculated dot products between the decoder derived from each decile and 
brain activity maps. These dot products are analogous to “linear predictors” from a regression model. Here, we z-scored 
the dot products within each decile for visualization purposes. We calculated AUCs based on these dot products, where 
higher dot products were assumed to correspond to the stimulus of interest. We used the 0.632 + bootstrap to obtain 
unbiased AUCs when testing our decoders.

information is available throughout the neocortex, 
including regions previously identified as “noise” by uni-
variate measures. This information can be uncovered by 
integrating signal over large swaths of voxels (~10,000 
voxels). After discovering this pan-neocortical informa-
tion content, we explored stimulus-specific information in 
the subcortex, cerebellum, and across-subject neocorti-
cal covariance. Additionally, we found that increasing lev-
els of sedation degrade the omnipresent information. 
This brain-wide information reflects perceptual (con-
scious) processes and may play a role in identifying sub-
jective, holistic perception from incoming sensory inputs, 
such as recognizing that an oblong yellow object is an 
edible banana.

Decoding can assess the statistical information con-
tained in functional neuroimages, presumably arising 
from neural information, by transmuting brain activity into 
a single number that is, ideally, monotonically related to a 
stimulus of interest. This monotonicity facilitates the dis-
crimination between the stimuli of interest and no inter-
est, the performance of which indicates the amount of 
stimulus-specific information in the data. In this work, we 
leveraged these decoding ideas to uncover stimulus-
specific information across the neocortex, subcortex, 

and cerebellum in studies with basic sensory stimuli. We 
demonstrate that such widespread sensory-specific 
information is sensitive to propofol-induced sedation.

2.  METHODS

2.1.  Overview

Our paper is composed of two parts, for which we use six 
datasets with different sensory stimuli (Table S1; N = 293 
subjects) (Baliki et  al., 2009; Kandeepan et  al., 2020; 
Liang et al., 2019; Naci et al., 2018; Pernet et al., 2015; 
Wager et  al., 2013) to build simple decoding models 
using the t-statistics from standard general linear model 
(GLM) mass-univariate contrasts (Fig. 1, top left; Fig. S1).

The first part of our study examines decoding in 5 of 
these datasets, 4 of which contain 2 stimuli and 1 of  
which includes 4 stimuli, totaling 10 different stimulus  
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t-statistics by magnitude to create 10 decoders for each 
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highest t-statistics (10th decile) and the last decoder com-
prised voxels with the lowest t-statistics (1st decile) 
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(Fig. 1, top right). We tested each decoder by calculating 
the dot product between the decoder (sign, magnitude, 
and location of t-statistics within a single decile; e.g., 
Fig. 1, bottom right) and each brain activity map (general 
linear model (GLM)-derived maps of parameter esti-
mates), yielding a weighted sum of stimulus-related 
activity across all voxels comprising the decoder (Fig. 1, 
bottom middle). We used the 0.623 + bootstrap to obtain 
unbiased out-of-sample estimates (like cross-validation) 
of between-subject areas under the receiver operating 
characteristic curve (AUC) to indicate discrimination per-
formance (Fig. 1, bottom left), preventing our AUCs from 
being susceptible to overfitting. To succinctly describe 
our results, we meta-analyzed the resulting AUCs. We 
focused on comparisons between stimuli rather than 
comparisons to rest since the differences between stim-
uli are more subtle than the differences between each 
stimulus and rest; comparisons to rest can be found in 
the original studies. 

The second part of our study uses the remaining data-
set, in which participants listened to an auditory stimulus 
under different levels of propofol-induced sedation 
(Kandeepan et al., 2020; Naci et al., 2018). We performed 
similar analyses as those described above, and we com-
pared AUCs across levels of sedation.

2.2.  Datasets

The six datasets used in this paper are part of published 
studies and were either provided by their authors (Data-
sets 1–4) or downloaded from public repositories (Data-
sets 5 and 6). The studies that produced these datasets 
were conducted in accordance with the Declaration of 
Helsinki and were approved by local Institutional Review 
Boards. Datasets 1–4 consist of voxel-wise, whole-brain, 
stimulus-dependent GLM analysis activation maps. 
Datasets 5 and 6 consist of BOLD timeseries which were 
processed using standard fMRI methods described 
below. The preparation of these datasets has been previ-
ously described by Jabakhanji et al. (2022).

2.2.1.  Dataset 1

Fifteen (15) right-handed adult subjects (mean age: 
35 ± 11 years, 7 females). Subjects had no history of pain, 
psychiatric, or neurological disorders. fMRI data were 
collected while subjects received thermal stimuli across 
three temperatures: 47°C, 49°C, and 51°C. Subjects con-
tinuously rated, using a finger span device (Apkarian 
et al., 2001; Baliki et al., 2006), their pain from 0 (not pain-
ful) to 100 (worst imaginable pain) (“pain rating” stimulus). 
A control scan was performed while subjects used the 
finger span device to track a moving bar projected on the 

screen (“visual rating” stimulus; moving bar replicated for 
each subject the specific pain rating stimulus temporal 
pattern). The dataset includes one GLM beta map per 
subject per stimulus type. The dataset was previously 
described in Baliki et al. (2009).

2.2.2.  Dataset 2

Fifty-one (51) healthy right-handed adult subjects 
(age = 24 ± 2 years, 34 females). Subjects had no his-
tory of brain injuries, pain disorders, or psychiatric or 
neurological diseases. fMRI data were collected while 
subjects received painful heat stimuli on the right foot 
dorsum using an Nd:YAP laser, as well as tactile stimuli 
to the same area using electrical stimulation. Stimuli 
were not delivered at the same time. Perceived intensi-
ties were recorded for every stimulus and only the stim-
uli with matched perceived intensity for painful heat and 
touch were selected for GLM analysis. The dataset 
includes one activation map per subject per stimulus 
modality—painful heat and touch. The dataset was pre-
viously described in Liang et  al. (2019) and Su et  al. 
(2019).

2.2.3.  Dataset 3

Fourteen (14) healthy, right-handed, adult subjects 
(age = 20–36 years old, 6 females). fMRI data were col-
lected while subjects received painful heat stimuli on the 
right foot dorsum using an Nd:YAP laser, tactile stimuli to 
the same area using electrical stimulation, visual stimuli 
using a white disk presented above the right foot, and 
auditory stimuli delivered via pneumatic earphones. 
Stimuli were not delivered at the same time. Perceived 
intensities were recorded for every stimulus and only the 
stimuli with matched perceived intensity across the four 
modalities were selected for GLM analysis. The dataset 
includes one activation map per subject per stimulus 
modality—painful heat, tactile, auditory, and visual. The 
dataset was previously described and published in Liang 
et al. (2019).

2.2.4.  Dataset 4

Thirty-three (33) healthy right-handed adult subjects 
(age = 28 ± 9 years, 22 females). Subjects had no history 
of pain, psychiatric, or neurological disorders. fMRI data 
were collected while subjects received thermal stimuli 
that varied in 1° Celsius increments across six tempera-
tures from 44.3°C up to 49.3°C. Subjects then evaluated 
each stimulus as warm, and scored it from 0 (not per-
ceived) up to 99 (about to become painful), or as painfully 
hot, and scored it from 100 (no pain) to 200 (worst 
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imaginable pain). The dataset includes an average GLM 
activation map per subject per stimulus temperature, as 
well as the corresponding average stimulus ratings. 
When this dataset was applied dichotomously (pain vs. 
no pain), we averaged the brain activity maps from the 
painful and nonpainful conditions; we omitted subjects 
who had less than two brain activity maps for each con-
dition, resulting in 29 subjects for dichotomous ratings. 
The dataset was previously described in Wager et  al. 
(2013) and Woo et al. (2015).

2.2.5.  Dataset 5

Two-hundred thirteen (213) healthy adult subjects 
(age = 24 ± 7 years, 101 females). Subjects had no his-
tory of physical or mental health conditions. fMRI data 
were collected while subjects performed a voice localizer 
task. Forty blocks of vocal sounds (20) and nonvocal 
sounds (20) interspersed with periods of silence were 
presented while the subjects lay silent and passively lis-
tened with their eyes closed in the scanner. This dataset 
was previously described by Pernet et  al. (2015). Raw 
fMRI data were downloaded from OpenNeuro (ds000158). 
We performed minimal preprocessing using the FMRIB 
5.0.8 software library (FSL) (Jenkinson et al., 2012), MAT-
LAB2018a, and in-house scripts. The following steps 
were performed: motion correction, intensity normaliza-
tion, nuisance regression of six motion vectors, signal-
averaged overall voxels of the eroded white matter and 
ventricle region, and global signal of the whole brain, and 
band-pass filtering (0.008–0.1 Hz) by applying a 4th-order 
Butterworth filter. All preprocessed fMRI data were regis-
tered to the 2 × 2 × 2 mm MNI152 template using a two-
step procedure: the mean of preprocessed fMRI data 
was registered with a seven-degrees-of-freedom affine 
transformation (x, y, z, α, β, γ, and scale factor k) to its 
corresponding T1 brain (FLIRT); next, transformation 
parameters were computed by nonlinearly registering 
individual T1 brains to the MNI152 template (FNIRT). 
Combining the two transformations yielded a mapping 
from the preprocessed fMRI data to standard space. 
Task-related activation maps (vocal vs. silence, and non-
vocal vs. silence) were derived from a whole-brain GLM 
regression analysis using the FMRIB Software Library 
(FSL) (Jenkinson et al., 2012; Smith et al., 2004; Woolrich 
et al., 2009).

2.2.6.  Dataset 6

Seventeen (17) healthy, adult subjects (4 women; 
age = 24 ± 5 years) took part in this study, which involved 
listening to a natural stimulus (5  minutes plot-driven 
audio story) and resting state (first 5 minutes of 8 minutes 

scan) while under different levels of anesthesia 
(Kandeepan et al., 2020; Naci et al., 2018). Sedation lev-
els under propofol were determined by the Ramsey scale 
(awake, no propofol; light sedation, Ramsey  =  3; deep 
sedation, Ramsey  =  5; recover, Ramsey  =  2, approxi-
mately 11 minutes after cessation of propofol) (Kandeepan 
et  al., 2020). This dataset was previously described in 
Kandeepan et al. (2020) and Naci et al. (2018). Raw fMRI 
data were downloaded from OpenNeuro (ds003171). We 
performed minimal preprocessing using the FMRIB 5.0.8 
software library (FSL) (Jenkinson et  al., 2012), MAT-
LAB2018a, and in-house scripts. The following steps 
were performed: motion correction, intensity normaliza-
tion, nuisance regression of six motion vectors, signal-
averaged overall voxels of the eroded white matter and 
ventricle region, and global signal of the whole brain, and 
band-pass filtering (0.008–0.1 Hz) by applying a 4th-order 
Butterworth filter. All preprocessed fMRI data were regis-
tered to the 2 × 2 × 2 mm MNI152 template using a two-
step procedure: the mean of preprocessed fMRI data 
was registered with a seven-degrees-of-freedom affine 
transformation (x, y, z, α, β, γ, and scale factor k) to its 
corresponding T1 brain (FLIRT); next, transformation 
parameters were computed by nonlinearly registering 
individual T1 brains to the MNI152 template (FNIRT). 
Combining the two transformations yielded a mapping 
from the preprocessed fMRI data to standard space. 
Task-related activation maps (auditory clip vs. resting 
state) were derived from a whole-brain GLM regression 
analysis using R.

2.3.  Decoder construction and evaluation

Brain activity maps were masked to include only neocor-
tical gray matter voxels using the Harvard-Oxford neo-
cortical mask thresholded at 0.5. For each contrast, we 
performed a voxel-wise paired t-test using two brain 
activity maps from each subject, resulting in a t-statistic 
for each voxel in the gray matter. The t-statistic map was 
then binned into deciles by |t|—decile 10 contained the 
highest absolute value t-statistics (the “most significant”) 
and decile 1 contained the lowest absolute value t-
statistics (the “least significant”). These unthresholded, 
deciled t-statistic maps served as our decoders.

We evaluated the decoders (D ∈Rp×10) by multiplying 
them with the brain activity maps of interest (BI ∈R

n×p) 
and no interest (BNI ∈R

n×p), for p voxels and n subjects. 
This resulted in two matrices of dot products between the 
decoders and brain activity maps: one matrix of dot 
products from the activity maps of interest (RI = BID) and 
one matrix of dot products from the activity maps of no 
interest (RNI = BNID). The columns of RI and RNI  were 
then compared to calculate an AUC via the Mann–Whitney 
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U-statistic (AUC = U1 / n
2). That is, column 1 in RI was 

compared with column 1 in RNI, column 2 in RI was com-
pared with column 2 in RNI, and so on for all 10 columns, 
producing 10 AUCs—one for each decile. In doing so, we 
treated the subjects as dependent for decoder training 
(paired t-test) but independent for testing.

We constructed and tested all decoders using the 
0.632 + bootstrap method with 100 replicates, which pro-
vides unbiased estimates of out-of-sample performance 
(Efron & Tibshirani, 1997). Briefly, the 0.632 + bootstrap 
was performed as follows:

	 1.	� Train and test a model using the original sample. 
Let the resulting AUC be called the “apparent” 
AUC, θ!

app
.

	 2.	� Generate b bootstrap samples by resampling the 
original sample with replacement. Note, each boot-
strap sample contains approximately 1− 1

e = 63.2% 
of the original sample. For each of the b bootstrap 
samples, we train the model on the bootstrap sample 
and test the model on the ~36.8% of individuals not 
part of the bootstrap sample. Let this AUC estimate 
be the “leave-one-out” (out-of-sample) bootstrap 
AUC, θ! i

boot .
	 3.	� Average the resulting out-of-sample bootstraps, 

θ! •
boot

= 1
b i=1

b∑ θ! i
boot

.

	 4.	� Obtain the 0.632 + estimate.

	 a.	� Calculate the relative overfitting rate,

	

R! =

1,  θ! •
boot

≤ 0.5

θ!
app

− θ! •
boot( ) / θ!

app
− 0.5( ) ,  θ!app > θ! •

boot

0,  otherwise

,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

		  where 0.5 indicates no information in the 
decoder.

	 b.	� Calculate the weight to adjust the 0.632 esti-
mate,

	 w! = 0.632
1− 0.368R!

. 	

	 c.	� Calculate the 0.632 + estimate,

	 θ!
0.632+

= 1−w!( ) ⋅θ!app+ w! ⋅θ! •
boot.	

Note that we did not adjust θ! •
boot

 with max θ! •
boot

,0.5( ) in 
4c as commonly done (Efron & Tibshirani, 1997; Noma 
et al., 2021), since this would create a floor effect such 
that θ!

0.632+
≥ 0.5, which would downwardly bias our vari-

ance estimates in the next step. This results in θ!
0.632+

 

estimates that are identical to estimates with the adjust-
ment when θ!

0.632+
>0.5, but allows our estimates to dip 

below chance (AUC  =  0.5) since it removes the floor 
effect.

Variances and covariances of the AUCs were esti-
mated using a nested bootstrap with 500 replicates in the 
outer loop and 100 replicates in the inner loop (Noma 
et  al., 2021), totaling 500 ×  100  =  50,000 replicates in 
each study. All inner and outer bootstraps were per-
formed on the subject level. This sampling was carried 
out on Northwestern University’s High Performance 
Computing clusters (Quest), and took ~12 hours to com-
plete using 50 cores.

2.4.  Meta-analysis

We performed a single-paper meta-analysis to consoli-
date our results (McShane & Böckenholt, 2017). First, all 
AUCs were “squeezed” or shrunken toward 0.5 to avoid 
boundary effects (Smithson & Verkuilen, 2006),

	 θ! * =
n−1( ) ⋅θ!0.632+ + 0.5

n
, 	

where n was the total number of brains used (i.e., twice 
the number of participants). Next, the 0.632 + bootstrap-
estimated AUCs and their bootstrapped replicates  
were logit transformed, and the logit-transformed boot-
strap replicates were used to generate a 100  ×  100 
variance–covariance matrix of sampling errors. The logit-
transformed AUCs were used as the response variable in 
a multivariate, multilevel linear meta-regression (metafor, 
version 3.8-1) (Viechtbauer, 2010). This allowed for prop-
erly accounting for within-study dependence, including 
the dependence between deciles in a single contrast 
(e.g., decile 1 and decile 2 in Study 1) and the depen-
dence between contrasts in Study 3 (e.g., decile 1 in 
touch vs. pain and decile 2 in visuomotor vs. pain). We 
were principally interested in the effect of decile on dis-
crimination performance; we treated decile continuously 
and used it as a linear moderator (fixed effect). Similarly, 
decile was treated continuously in the random-effect 
specification, wherein contrasts were nested within stud-
ies. Finally, we performed a meta-analysis that combined 
the neocortex, subcortex, and cerebellum findings from 
contrasts 1–9, for which we used 270 ×  270 variance–
covariance matrices.

2.5.  Across-subject decoding with principal 
components analysis (PCA)

To analyze the task relevance of the across-subject 
variance–covariance structure, we performed PCA on the 
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pain beta maps from Study 2 using singular value decom-
position on a column-wise z-scored BI. To limit the num-
ber of principal components (PCs), we performed parallel 
analysis by generating surrogate data—100 null 
datasets—and calculating the variance explained by each 
null component, against which we compared our observed 
explained variance. Within each surrogate dataset, we 
performed discrete Fourier transforms on each beta map, 
scrambled their phases, and performed the inverse Fou-
rier transform (Lancaster et al., 2018). This enabled us to 
maintain identical spatial frequency content and similar 
autocorrelation functions to the original beta maps—this 
was important since autocorrelation easily gives rise to 
spurious correlations (Ernst et al., 2017), which can affect 
dimensionality estimates (Cordes & Nandy, 2006). We 
used the number of real PCs that fell above the noise floor 
as determined by the parallel analysis.

After establishing with the whole sample that four PCs 
fell above the noise floor, we used the bootstrap 0.632 + to 
fit PC-based decoders. In each training set, we column-
wise z-scored BI

train and performed PCA to obtain the top 
four PCs. We then independently z-scored the brain activ-
ity maps in the test set, BI

test and BNI
test, projected them into 

the four-dimensional PC space of BI
train, and calculated 

their respective Kullback–Liebler divergence from BI
train:

DKL Btest ||BI
train( ) = 1

2
tr ΣΣ train

−1 ΣΣ test( ) − 4 + µµ train − µµ test( )T⎛
⎝⎜

ΣΣ train
−1 µµ train − µµ test( ) + ln detΣΣ train

detΣΣ test

⎛
⎝⎜

⎞
⎠⎟
⎞

⎠
⎟ ,

where µµ and ΣΣ were calculated in the PC space. A geo-
metric depiction of this operation is shown in Figure 3. If 
BI
test had a lower KL than BNI

test, that test sample received 
a 1; otherwise, the test sample received a 0. The final 
bootstrap 0.632 + estimate thus represents the expected 
out-of-sample classification accuracy.

As a point of comparison, we also used t-statistic 
decoders based on the entire neocortex (i.e., they were 
not binned by decile). For these decoders, the Kullback–
Liebler divergence was assessed using the univariate 
response distributions. This ensured that the t-statistic 
decoder was assessed using the entire sample, akin to 
the PCA decoder. The correlation between the PCA and 
t-statistic decoding accuracies was estimated using the 
accuracies’ bootstrap replicates.

2.6.  Perturbations

2.6.1.  Noise

Since voxels with low signal-to-noise ratios (i.e., low t-
statistics) were capable of decoding, we aimed to 

evaluate this finding’s boundary conditions. Each brain 
activity map contains a correlation coefficient ri for each 
voxel i, along with a t-statistic ti. We started with a brain 
of t-statistics, to which we added Gaussian noise 
(N 0,c | ti |( ), where c ∈ {0,1,2,3,4,5}). This procedure 
ensured that the noise added to each voxel was propor-
tional to its signal-to-noise ratio to avoid biasing the 
regions with high signal. The t-statistics with added 
noise were then converted to Pearson’s r, on which we 
performed the decoding. Noise was added within each 
0.632 + bootstrap replicate such that the resulting AUCs 
were averaged over 500 iterations (as opposed to 100 
for other analyses) of added noise.

2.6.2.  Voxel sampling

Since the ability to decode with low signal-to-noise vox-
els likely arises from integrating over several small bits of 
information, we randomly subsampled voxels. The full 
decoders contained approximately 10,735 voxels per 
decile, which could come from anywhere within our gray 
matter mask. We built and assessed decoders by subsa-
mpling the brain activity maps, such that the resulting 
decile-based decoders contained 100, 250, 500, 1,000, 
2,500, 5,000, 7,500, and 10,735 voxels each. Voxels were 
sampled within each 0.632  +  bootstrap replicate such 
that the resulting AUCs were averaged over 500 iterations 
(as opposed to 100 for other analyses) of sampled voxels.

2.7.  Anatomical specificity

2.7.1.  Neocortex, subcortex, and cerebellum

Neocortical, subcortical (thalamus, striatum, hippocam-
pus, and amygdala), and cerebellar gray matter voxels 
were extracted from each brain activity map. The neocor-
tical gray matter mask contained 112,651 voxels, the 
subcortical mask contained 6,882 voxels, and the cere-
bellar cortex mask contained 17,142 voxels. Since 
decoding power is sensitive to the number of voxels, we 
randomly subsampled 6,882 voxels (or fewer for studies 
that were further masked) from each mask to control for 
number of voxels. This subsampling was completed 
within each 0.632 + inner bootstrap replicate.

2.7.2.  Neocortical gray matter, white matter,  
and cerebral spinal fluid

Neocortical gray matter (GM), white matter (WM), and 
cerebral spinal fluid (CSF) voxels were masked using the 
Harvard–Oxford atlas with conservative thresholds: 
112,651 for GM, 61,324 for WM, and 1,926 for CSF. 
Within each study, we controlled for the number of voxels 
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by resampling 1,925 voxels (since 1,926 < 61,324 < 
112,651) from GM and WM within each bootstrap run.

2.8.  Anesthesia decoders

The anesthesia dataset employed a naturalistic audio 
stimulus and thus does not have a task vector. Moreover, 
this was the only task performed. As such, we compared 
each anesthesia level’s task (naturalistic listening) to 
rest. We used the average auditory cortex activity from 
the training sample as the task vector to facilitate this. 
This analysis is obviously circular within the training 
sample. However, the testing is not circular because the 
training sample’s brain activity was used as the vector in 
the testing sample and decoding was assessed based 
on the resulting brain activity maps. To extract the audi-
tory cortex vector, we defined a region of interest (ROI) 
based on the Neurosynth association map for “auditory,” 
which was thresholded using a z-score of 12.

2.8.1.  Decile decoders

Decile-based decoders for the anesthesia dataset were 
created similarly to the other datasets. To summarize the 
performance within each decile, we fit a single general-
ized least squares model on the logit-transformed AUCs 
from all anesthesia states, y. To do so, all AUCs were 
“squeezed” toward 0.5 like they were for the meta-
analysis. Our weight matrix, W, was defined as the 
inverse of the variance–covariance matrix of the logit-
transformed bootstrapped AUCs, ΣΣ!. The parameter esti-
mates, ββ!, and their standard errors were calculated as

	 ββ! = XTWX( )−1XTWy

	

SE ββ!⎡⎣
⎤
⎦ = diag XTWX( )−1XTWΣΣ!WX XTWX( )−1⎛

⎝⎜
⎞
⎠⎟

= diag XTWX( )−1⎛
⎝⎜

⎞
⎠⎟ ,

where X is the design matrix,

X = 1 xdecile⎡
⎣

⎤
⎦ ⊗ xawake x light xdeep xrecover⎡

⎣
⎤
⎦ .

This differs from standard weighted least squares (a 
diagonal weight matrix) but has more favorable proper-
ties since it accounts for covariation.

2.8.2.  Region of interest decoders

We created posterior cortex, anterior cortex, visual cor-
tex, and motor cortex ROIs using the Harvard–Oxford 

neocortical atlas, thresholded at 25%. The posterior cor-
tex was specified as areas 20–22; the anterior cortex, 
areas 1, 4, and 5; the visual cortex, areas 36, 40, and 48; 
and the motor cortex, area 7. In addition, we used the 
same auditory cortex ROI as described above. Again, the 
averaged auditory ROI time course from the training 
sample was used as the task vector. A decoder was cre-
ated using the t-statistics from each ROI (without deciles), 
which was fit and tested using the same approach as the 
decile decoders.

2.8.3.  Functional connectivity

Pearson correlation coefficients were used to calculate 
within- and intersubject (ISFC) functional connectivity 
between the auditory cortex and the other ROIs, during 
both the auditory task and rest within each level of anes-
thesia. Within-subject functional connectivity was calcu-
lated by averaging the time course between all voxels 
within each ROI, calculating the correlation between the 
auditory ROI and all other ROIs, converting from Pear-
son’s r to Fisher’s z, averaging across participants, and 
then converting back to Pearson’s r. ISFC was calculated 
similarly to previous work (Simony et  al., 2016). When 
calculating subject 1’s ISFC, we correlated subject 1’s 
auditory cortex time course with the average time course 
of, for example, posterior cortex from subjects 2–n. This 
was repeated for all subjects. The resulting auditory 
cortex–posterior cortex ISFCs were averaged using Fish-
er’s z to obtain the final estimate of the auditory cortex–
posterior cortex ISFC. Again, this was repeated for the 
anterior, visual, and motor cortex; ISFC was also mea-
sured between auditory cortices across all subjects.

2.8.4.  Statistical inference

Rather than relying on null hypothesis significance test-
ing (NHST) and the thresholds intrinsic to it (Amrhein 
et al., 2019; McShane et al., 2019), our statistical infer-
ences rely on effect estimation by quantifying the effect 
(e.g., AUC) and its uncertainty given our statistical mod-
els’ assumptions.

3.  RESULTS

3.1.  Stimulus-specific information is widespread 
across the human neocortex

Decoding performance was consistently above chance 
(AUC > 0.5) for all deciles across 9 out of 10 contrasts. 
Despite univariate t-statistics in the lowest decile being 
close to 0, the lowest decile’s decoding performance was 
only marginally poorer than the highest decile’s decoding 
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performance (Fig. 2a, b; Table S2). Therefore, regions in 
neocortical gray matter commonly considered not to be 
involved in stimulus processing (i.e., orthogonal to the 
stimulus in univariate analyses) contain instead robust 
stimulus-related information. These findings complement 
recent work using statistical learning to optimize voxel 
weights for predictive performance (Cox & Rogers, 2021; 
Kumar et al., 2020; Mohr et al., 2015; Rish & Cecchi, 2017; 
Rish et al., 2012) and demonstrate that the presence of 
information is far more distributed across the brain than 
previously thought. Moreover, our results show for the first 
time how accessible this information truly is: our models 
use plain mass-univariate t-statistics, without any regular-
ization or consideration of their joint distribution. Regular-

ization and multivariable modeling are unnecessary, and 
even voxels with t-statistics close to 0 can jointly discrim-
inate stimuli from one another quite well (meta-analytic 
AUC > 0.7). Therefore, our results indicate the presence of 
rich stimulus-related information throughout the neocor-
tex, which degrades slowly as a function of the univariate 
signal-to-noise metric (t-statistic deciles).

3.2.  Potential confounds that may account  
for the widespread stimulus-related information

When decoding stimuli from neuroimages, one cannot 
infer the causal role of the predictors (voxels) in the decod-
ing outcome (task) (Jabakhanji et al., 2022; Vigotsky et al., 
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Fig. 2.  Stimulus-specific information across the neocortex, subcortex, and cerebellum. (a, b) We first analyzed stimulus-
relevant information using the entire neocortex. (a) Four example studies of neocortical decoding performance across 
all t-statistic deciles. Although all 4 studies have stimulus-specific information in all 10 deciles, the degree to which the 
stimuli can be discriminated differs slightly between studies. Error bars indicate ± SE. (b) A mixed-effects meta-analysis 
across 10 contrasts reveals that all 10 deciles can, on average, discriminate between stimuli. The ability to discriminate 
between stimuli implies the presence of task-specific information, meaning that even voxels with t-statistics close to 0 
(decile 1) contain marked task-specific information. Error bars indicate ± CI95%. (c, d) After finding task-specific information 
across the neocortex, we probed for task-specific information in the subcortex and cerebellum. To facilitate fair 
comparisons between structures, we matched the number of voxels using random subsamples (see Methods), resulting 
in slightly different neocortical results. (c) Three example studies demonstrate marked differences in regional task-specific 
information. In Study 1, the relative task-specific information in the neocortex shifts from being closer to the subcortex to 
the cerebellum. In Study 2, all three regions are more similar, while in Study 3, there is a consistent pattern with the three 
areas being starkly different. (d) After controlling for the number of voxels in the neocortex, subcortex, and cerebellum, a 
meta-analysis across nine contrasts (excluding Study 5) reveals that task-related information exists across all regions and 
deciles. Task-related information in the neocortex dominates for higher deciles, but this superiority vanishes in smaller 
deciles (see intercept and slope contrasts in Table S5). Note that the difference in error bar widths between the three 
conditions partly reflects the nonlinearity of the AUC scale, which will tend to have more precise estimates near the floor 
(0) and ceiling (1). Error bars indicate ± CI95%.
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2024). There are many reasons why information may be 
present in acausal structures. For example, physiological 
and nonphysiological noise may have task specificity (Liu, 
2016). We attempted to rule out such confounds by 
decoding stimuli using white matter and cerebrospinal 
fluid (cf. gray matter). Decoding performance was gener-
ally poor in these regions (Fig. S2), suggesting that these 
control structures contain less signal than the neocortex. 
In addition, white matter and cerebrospinal fluid decoding 
performance substantially covaried (r = 0.7), but they only 
weakly covaried with gray matter, implying vastly different 
signal sources between these structures (Fig. S2). Finally, 
head motion artifact—another potential candidate of task-
related noise that contaminates the BOLD signal—only 
minimally correlated with decoder responses; orthogonal-
izing the decoders’ dot products to head motion only 
slightly decreased discrimination (maximum ΔAUC < 0.05). 
Thus, our observed effects are unlikely attributable to 
task-specific, non-neural confounds.

3.3.  Decoder performance’s dependence  
on added noise

To assess the general sensitivity of the decoders, we built 
them using different numbers of voxels and different 
amounts of added noise. Decoders with fewer voxels 
performed poorly and were more sensitive to added 
noise (Fig. S3). As one might expect, the ability to suc-
cessfully decode using voxels with low t-statistics is prin-
cipally attributable to the number of included voxels. 
There is a continuum of explanations for why this might 
be the case. On one extreme, each voxel may contain a 
tiny amount of task-specific information. Integrating 
many small bits of information allows one to accumulate 
enough information to discriminate between stimuli. On 
the other extreme, since t-statistics are empirically 
derived and thus will not be stable across samples, “sig-
nal” voxels may mix with “noise” voxels, creating instabil-
ity in our deciles. In this case, by sampling more voxels, 
we are more likely to capture “signal” voxels within the  
“noise” decile(s) to enable successful decoding.

3.4.  Stimulus-specific information is widespread 
across the subcortex and cerebellum

Next, we tested whether the t-statistic information con-
tent is specific to the neocortex. Our analyses revealed 
that information is present throughout both the subcortex 
and the cerebellum, even where t-statistics are approxi-
mately 0 (Figs. S4 and S5; Tables S3 and S4). Cerebellar 
information varied more between task pairs than the neo-
cortex (three examples shown in Fig. 2c; Tables S2 and 

S4). These results complement recent work by Nakai and 
Nishimoto (2022), who used the subcortex and cerebel-
lum to decode 103 cognitive tasks using a within-subject 
approach based on more complex models trained using 
statistical learning. In contrast, we used t-statistics from 
regional activity maps to decode across rather than within 
subjects. Our meta-analysis across task contrasts 
showed that the performance of the subcortical and cer-
ebellar decoders was only slightly inferior to that of the 
neocortex-based decoders, even after controlling for the 
number of voxels (Fig. 2d; Fig. S6; Table S5). Overall, we 
observed that subcortical and cerebellar structures con-
tain widespread, task-specific information, demonstrat-
ing that information spread is not restricted to the 
neocortex but is present across the entire human brain.

3.5.  Task-specific information is contained within 
the across-subject variance structure

Our t-statistic analysis relies on the stimulus’s so-called 
main effect within each voxel. However, stimulus-relevant 
information may exist beyond the main effect—namely, in 
the variance structure. We evaluated the presence of 
higher-order, stimulus-specific information by performing 
principal components analysis (PCA) on data from one of 
the larger studies with equisalient stimuli (Study 2, pain 
vs. touch; n = 51) (Liang et al., 2019). We extracted four 
principal components (PCs) (Fig.  3a, b), with which we 
decoded across-subject variance. We fit PCs in the train-
ing sample to assess the across-subject variance–
covariance structure of the pain condition. Next, we 
projected the test sample’s pain and touch activation 
maps into the same PC space (Fig. 3c).

By comparing the multidimensional structure of the 
test samples with the original training sample, we could 
distinguish pain activation maps from touch activation 
maps with 95% accuracy. Interestingly, this suggests 
that unique patterns of stimulus-related activity (PCs) dif-
fer across participants. This perspective is partly sup-
ported by visual inspection of the PCs, which appear 
physiological rather than reflecting motion or registration 
artifacts, where one might expect edge effects (Fig. 2b). 
From a constructivist viewpoint, one interpretation is that 
there is a many-to-one relationship between brain activ-
ity and gross percepts, consistent with the notion of 
degeneracy (Barrett, 2017; Edelman & Tononi, 2000). In 
our view, a related idea from motor control, abundance, 
complements and expands on degeneracy by providing 
a teleological explanation: since a one-to-one relation-
ship between neural activity and percepts would be 
overly prescriptive and, as a result, inflexible and unsta-
ble, a many-to-one relationship allows for the nervous 
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system to organize and tune itself to robustly complete a 
task (Latash, 2000)—in this case, generating a percept. 
Many different combinations of brain activity patterns 
may be sufficient to create the perception of a banana. 
Since these discordant patterns are generalizable, 
exploring individual differences may allow for the discov-
ering of neurocognitive rules. This analysis is only weakly 
correlated with the t-statistic decoder’s result (Fig.  3d) 
and demonstrates the presence of ample stimulus-
specific information in the higher (statistical) moments of 
brain activity maps—that is, the variance and covariance 
structure.

Understanding the nature of this brain-wide informa-
tion is more challenging than identifying its existence. 
Recent work in mice demonstrates widespread cortical 
dynamics as necessary for behavior—preventing local 
activation clusters impairs performance, suggesting a 
functional rather than epiphenomenal role (Pinto et  al., 

2019). If activation across the entire brain is necessary for 
task performance, it is more likely that the information we 
detected across brain regions is complementary rather 
than redundant. In other words, different brain regions 
capture distinct properties of the task or stimulus. How-
ever, the question arises as to whether this widespread 
information is involved in conscious perception or is sim-
ply a correlate. To address this, we will now link these 
findings to the question of how conscious percepts arise 
from neural activity.

3.6.  Widespread, stimulus-specific information in 
the neocortex scales with consciousness

Neurophysiological theories of consciousness posit that 
brain-wide information sharing is necessary but not suffi-
cient for consciousness (Tononi & Koch, 2015). Conceiv-
ably, the association between information sharing and 
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consciousness (Casali et  al., 2013) suggests that 
stimulus-specific brain-wide information should attenuate 
with increasing levels of sedation. Information cannot be 
omnipresent if it is not readily shared across the brain. 
But how do states of consciousness interact with 
stimulus-specific, brain-wide information content? To 
assess this, we analyzed a dataset in which individuals 
listened to an auditory stimulus (5-minute audio from a 
movie) under different levels of propofol-induced seda-
tion (Kandeepan et  al., 2020; Naci et  al., 2018). Since 
there was no auditory stimulus vector, we averaged par-
ticipants’ auditory cortex time courses to serve as the 
stimulus vector. We used a separate resting-state scan 
as a negative control.

Consistent with our analyses above, t-statistic decod-
ing showed that stimulus-related information was omni-
present across the neocortex when participants were 
awake. However, this information degraded with increas-
ing levels of sedation and was partially restored while 
recovering from sedation (Fig.  4a, b). We performed a 

region-of-interest (ROI)-based analysis to complement 
the region-agnostic decile analysis. In the awake state, 
different regions exhibited distinct abilities to discrimi-
nate the stimulus from resting state, with the auditory 
cortex exhibiting the greatest discrimination. Moreover, 
the auditory cortex’s stimulus-specific signal was invari-
ant to sedation level, but stimulus-specific information 
degraded with deeper levels of sedation across all other 
ROIs (posterior, anterior, visual, and motor cortices) 
(Fig.  4c). Our findings imply that brain-wide, stimulus-
specific information content is related to subjective per-
ception rather than the simple encoding of the stimulus 
features.

Our results are consistent with the recent report by 
Tauber et al. (2024), who used Utah arrays to record from 
macaques’ auditory, associative, frontal cortices during 
an auditory stimulus. They found that auditory cortex 
activity was intact following propofol administration, but 
associative and frontal cortex firing was drastically weak-
ened. These findings are also consistent with fMRI in 
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macaques (Uhrig et al., 2016). Whether using electrodes 
or fMRI, it appears that local auditory sensory processing 
remains intact with increasing levels of sedation while 
activity elsewhere degrades.

3.7.  Intersubject functional connectivity scales  
with consciousness

The brain’s modularity and interconnected functional 
and structural networks must underly our observed 
brain-wide distribution of information (Eguiluz et  al., 
2005; Knosche & Tittgemeyer, 2011; Sporns et  al., 
2000a, 2000b). In particular, long-range connections and 
the consequently arising small-world networks provide a 
mechanism for efficient information sharing. The proper-
ties of these networks are thus likely to be critical for 
how information is communicated and captured across 
the brain. We elucidated the relevance of functional con-
nectivity to our findings by examining intersubject func-
tional connectivity (ISFC) using the auditory cortex as a 
seed. We quantified the temporal relationship between a 
participant’s auditory cortex and all other participants’, 
say, posterior cortex. ISFC decreased with deeper seda-
tion, much like decoding performance (Fig. 4d). Impor-
tantly, this construct is distinct from standard 
within-subject functional connectivity in that ISFC 
reflects only the statistical information associated with 
the task since the task is the only source of shared vari-
ance between different participants. During rest, we nei-
ther expect nor see strong ISFC (Fig. S7) since there is 
no common source of variance between different partic-
ipants. The ISFC results can be contrasted with the 
within-subject functional connectivity, which remains 
largely unperturbed across the different levels of seda-
tion (Fig. S7) since network structures are generally sta-
ble. Thus, ISFC seems to track sedation-dependent 
perceptual states.

Our results complement previous work that induced 
electrocortical potentials via transcranial magnetic stimu-
lation (TMS), which differentially propagate over the neo-
cortex as a function of the conscious state (Casali et al., 
2013). Here, we leveraged passive sensory stimuli, but 
our findings are consistent: loss of consciousness 
degrades brain-wide information content via a downreg-
ulation in corticocortical information sharing. Therefore, 
consciousness seems a necessary condition for the 
presence of widespread stimulus-related cortical infor-
mation. Our simple decoding approach may be sufficient 
to identify neural correlates of consciousness using natu-
ral sensory stimuli without needing to artificially stimulate 
the brain (using, e.g., TMS (Casali et al., 2013)). Neural 
stimulation to restore consciousness (or aspects of con-

sciousness) may provide clues into how this information 
is propagated (Tasserie et al., 2022; Taylor et al., 2016).

3.8.  Potential confounds that may account for the 
widespread consciousness-related information

Stimulus-related confounds, such as head motion, are 
likely greater when individuals are awake. However, our 
sedation level-dependent findings were unrelated to 
head motion (Fig.  S8). Moreover, we observed similar 
results whether we used auditory cortex activity from the 
awake or deep anesthesia conditions (Fig. S9). This latter 
point is remarkable: auditory cortex activity with deep 
sedation is arguably “purer” than that in the awake con-
dition, as higher-level processes and feedback loops will 
not modulate it, and similarly, head motion should be 
negligible. The generalizability of our findings across par-
ticipants and levels of sedation reinforces that our results 
represent consciousness-related neural information 
rather than stimulus-related artifacts.

3.9.  Widespread stimulus-specific information 
scales with consciousness in the subcortex  
and cerebellum

The neocortex is not the only neural structure involved in 
consciousness. Much has been debated regarding the 
role of the thalamus, other subcortical structures, and the 
cerebellum (e.g., Merker, 2007; Panksepp et  al., 2017; 
Tononi & Koch, 2015). Like the neocortex, the subcor-
tex’s stimulus-specific information content demonstrated 
a dose dependence on the level of sedation. Similarly, so 
did the cerebellum, although its dependence on sedation 
level displayed a more complex relationship (Fig. S10).

4.  DISCUSSION

We demonstrated the existence of stimulus-specific 
information throughout the entire brain. By using a very 
simple decoder—based on t-statistics, the same metric 
commonly used in univariate analysis of brain activity—
and aggregating the information contained across 
~10,000 voxels, we uncovered stimulus-specific informa-
tion across the entire brain, even in brain regions where 
univariate analysis indicates that there is approximately 
no stimulus-evoked signal. This analysis strictly con-
cerned patterns of brain activity within each subject; 
however, we also demonstrated that the across-subject 
variability of brain activity can differentiate between tasks 
as well. Common confounds could not explain our results, 
which are attributable to the aggregation of information 
across voxels; noisier data require more aggregation. 
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Importantly, our analyses used unbiased metrics akin to 
cross-validation (Efron & Tibshirani, 1997). Finally, we 
evaluated how this task-specific widespread information 
relates to conscious perception by studying the effects of 
sedation. In an auditory task, degradation of (1) informa-
tion in brain regions outside of the primary sensory cortex 
and (2) intersubject correlations as a function of sedation 
level establishes that at least some widespread informa-
tion is necessary for conscious perception. These results 
challenge the long-standing localizationist view that per-
ception is linked to localized “blobs” of brain activity and 
has important implications regarding the current stan-
dards of fMRI analysis and interpretation.

The notion of widespread, task-specific cortical 
dynamics is gaining traction across multiple fields of 
neuroscience. A decade ago, Gonzalez-Castillo et  al. 
(2012) used fMRI to demonstrate task-related informa-
tion across the human brain, averaging 100 repetitions 
of the same task (3 participants, 9–10 sessions collected 
over 3 months) to uncover widespread information. Their 
rigorous work allows for voxel-level inferences but at the 
expense of arduous data collection efforts. In contrast, 
our approach reliably uncovered widespread infor
mation, even in smaller fMRI studies. Importantly, the 
Gonzalez-Castillo et  al. (2012) analysis demonstrates 
that transformations of the task vector can be found 
across the brain, while our analysis only establishes the 
existence of ubiquitous task-related information. Decod-
ing studies using statistical learning approaches evi-
dence the existence of task-specific information outside 
of GLM areas (Cox & Rogers, 2021; Kumar et al., 2020; 
Mohr et al., 2015; Rish & Cecchi, 2017; Rish et al., 2012). 
It has also been demonstrated that some of these local 
information patterns can be uncovered via multivariate 
statistics (Davis et  al., 2014) and decoding methods 
(Haxby et  al., 2014; Kriegeskorte et  al., 2006; Norman 
et  al., 2006), but without explicitly demonstrating the 
amount of information lost by ignoring subthreshold 
regions. Similarly, recent human and macaque monkey 
fMRI studies demonstrate the presence of retinotopic 
tuning in cortical and, in macaques, subcortical regions 
remote from the visual cortex (Klink et  al., 2021; Liu 
et al., 2022), and multivariate analysis shows reinforce-
ment signals present throughout the human cortex 
(Vickery et  al., 2011). This fMRI evidence is comple-
mented by wide-field calcium imaging and Neuropixels 
recordings in rodent models that capture mesoscopic 
neocortical and subcortical dynamics on a moment-by-
moment basis, revealing brain-wide, task-specific activ-
ity across several cognitive domains (Gilad & Helmchen, 
2020; Lab et  al., 2023; Pinto et  al., 2019; Ren & 
Komiyama, 2021; Stringer et al., 2019). Electrophysiol-

ogy work in primates has also shown the ability to 
decode movements across several cortical neuronal 
populations (Carmena et al., 2003). Our results comple-
ment this prior work by demonstrating the presence of 
brain-wide, stimulus-specific information in human brain 
fMRI and the ease with which this information can be 
extracted from the mean and variance of brain activity.

Our findings have profound implications for task-
based fMRI analysis. Null Hypothesis Significance  
Testing (NHST) is the dominant statistical paradigm in 
task fMRI studies, which involves drawing dichotomous 
inferences from mass-univariate GLM analyses: Is a voxel 
“activated” or not? Subthreshold voxels are discarded, 
although many of them contain task-specific information. 
Thus, NHST masks task-related activation to maintain 
type I error rates (e.g., α = 0.05) (Gonzalez-Castillo et al., 
2012). Moreover, since fMRI meta-analyses typically  
rely on “vote-counting” procedures (Costafreda, 2009; 
Hedges & Olkin, 1980), regions with small, consistently 
subthreshold effects remain uncovered. However, these 
inferential issues can be at least partially overcome. On 
the study level, dichotomous interpretations of results, 
including those intrinsic to NHST, should be avoided. 
Analytically, taking advantage of covariance in the data 
and more flexible functional forms (cf. linear effects), such 
as the inclusion of basis or nonparametric functions, non-
linear terms, and/or temporal derivatives, may also 
improve sensitivity (Buchel et al., 1996, 1998; Chen et al., 
2023; Hopfinger et al., 2000). Such approaches (includ-
ing the analyses presented here) are superior to standard 
GLM, which assumes that task-related information can 
be linearly projected onto the hemodynamic response 
function-convolved task vector. At the meta-analytic 
level, data sharing can facilitate mega-analyses, enabling 
researchers to pool raw data from many studies, and 
sharing unthresholded maps of the estimated effects and 
their standard errors can facilitate proper meta-analysis 
(cf. vote counting) (Costafreda, 2009). Evidently, much 
information is left on the table in task fMRI studies, espe-
cially in univariate analysis but also with current multivar-
iate approaches. Our results highlight the urgent need to 
develop task fMRI analysis methods that can capture and 
interpret widespread task-related information.

At face value, the presence of brain-wide information 
reflects the state of consciousness rather than demon-
strating its mechanisms. However, we contend that at 
least some of the brain-wide information is necessary 
(causal) for conscious perception. This claim is based on 
two premises. The first premise, which we do not evi-
dence but believe is a reasonable postulate, is that brain 
activity is necessary for conscious perception. The sec-
ond premise, which we do evidence, is that auditory 
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cortex activity is insufficient for conscious perception. As 
a result, our findings have implications beyond neuroim-
aging and neuroscience in general—they extend to the 
study of consciousness.

Our and others’ results render the presence of task-
related brain-wide information indisputable. We decoded 
this information using both the magnitude (ignoring indi-
vidual differences) and variance (based entirely on indi-
vidual differences) of brain activity. In doing so, we 
demonstrated the ease with which this information can 
be uncovered, even in brain regions that mass-univariate 
analyses suggest to be approximately orthogonal to the 
delivered stimuli. We also show that the ubiquity of this 
information is not without bounds—it dissipates under 
propofol-induced sedation. By introducing a single 
assumption, we imply that at least some of this informa-
tion is necessary for consciousness. Although we only 
compared the brain responses to sensory stimuli, yet 
sensory-related information was spread across the entire 
brain. Neurocognitively, our results imply that perceptual 
states engage the entire brain. We speculate that the 
details of the distribution of information may define the 
nuanced properties of perception, for example, the affor-
dances of the oblong, yellow object. Finally, these results 
strongly challenge the notion of information localization 
in the brain without precluding regional specialization of 
function. For example, although language-specific infor-
mation can be uncovered across the entire neocortex 
(Huth et  al., 2016), the crucial role of Broca’s area is 
incontrovertible (Broca, 1865). Unraveling the unique 
contribution of diverse brain regions to perceptual states 
requires methods beyond traditional linear, univariate 
analyses which will allow disclosing the necessity of 
some and the sufficiency of others brain regions.

In contrast to the localizationist viewpoint, it has long 
been argued that brain-wide information sharing must 
underlie conscious perception, as this sharing facilitates 
the coherent integration of neural information. Most nota-
bly, this idea was first stated by William James (1890) and 
expounded on by Baars (1988) and Edelman and Tononi 
(2000), and rendered into a mechanistic theory by 
Mashour et  al. (2020), which is summarized by Block 
(2023) (see, however, Schurger & Graziano, 2022). Our 
approach and results provide a pathway to dissect differ-
ent neural hypotheses of consciousness, which suggest 
differential regional involvement and, thus, consciousness-
related information content.
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