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Abstract 

Whole-night sleep electroencephalogram (EEG) is plagued by several types of large-amplitude artifacts. Common approaches to 
remove them are fraught with issues: channel interpolation, rejection of noisy intervals, and independent component analysis are 
time-consuming, rely on subjective user decisions, and result in signal loss. Artifact Subspace Reconstruction (ASR) is an increas-
ingly popular approach to rapidly and automatically clean wake EEG data. Indeed, ASR adaptively removes large-amplitude artifacts 
regardless of their scalp topography or consistency throughout the recording. This makes ASR, at least in theory, a highly-promising 
tool to clean whole-night EEG. However, ASR crucially relies on calibration against a subset of relatively clean “baseline” data. This is 
problematic when the baseline changes substantially over time, as in whole-night EEG data. Here we tackled this issue and, for the 
first time, validated ASR for cleaning sleep EEG. We demonstrate that ASR applied out-of-the-box, with the parameters recommended 
for wake EEG, results in the dramatic removal of slow waves. We also provide an appropriate procedure to use ASR for automatic and 
rapid cleaning of whole-night sleep EEG data or any long EEG recording. Our procedure is freely available in Dusk2Dawn, an open-
source plugin for EEGLAB.

Key words: EEG cleaning; EEG artifacts; EEG preprocessing; EEG analysis; event-related potentials; NREM-REM cycles; slow wave sleep; 
electrophysiology; neuroscience
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Graphical Abstract 

Statement of Significance

Whole-night sleep electroencephalogram (EEG) recordings are plagued by large-amplitude artifacts. Common approaches to re-
move these artifacts, such as rejection of noisy time intervals or channel interpolation, are time-consuming and result in signal 
loss. These problems become prohibitive with the recent trend towards large datasets comprising thousands of whole-night re-
cordings. Artifact Subspace Reconstruction (ASR), widely popular in wake EEG, rapidly and automatically removes rare artifacts 
in long EEG recordings, and therefore seems particularly appropriate for whole-night EEG cleaning. However, its effectiveness for 
cleaning sleep EEG has never been systematically validated. Here we perform this validation and explain how to effectively clean 
whole-night EEG data with ASR. We also developed Dusk2Dawn—a freely-available open-source ASR plugin for the popular EEGLAB 
toolbox in MATLAB.

Introduction
Recording the electroencephalogram (EEG) has been central to 
understanding sleep, particularly its stages and disturbances 
[1–4]. Whole-night EEG data are however plagued by several types 
of large-amplitude artifacts, such as those caused by awakenings, 

whole-body movements, eye movements, sensor displacements 
and disconnections [5–7]. While simple approaches to automati-
cally detect noisy data based on amplitude thresholds are popular 
in wake EEG, they are not suitable in sleep given that amplitude 
varies considerably across sleep stages [1–4, 8]. Consequently, 
methods that adapt the artifact detection threshold according to 
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sleep stage have been developed [9]. However, these artifacts are 
often removed manually via channel-wise interpolation or rejec-
tion of noisy segments of data, time-consuming processes result-
ing in lost brain signal [6, 7, 9–11]. This issue becomes even more 
pressing given the current trend towards exploring large datasets 
encompassing thousands of polysomnographies [12, 13]. For all 
these reasons there is an urgent need for an automatic, fast, and 
reliable approach to clean sleep EEG data.

The current gold standard for (semi)automatic cleaning of 
wake EEG data is independent component analysis (ICA). ICA is 
a spatial filter that removes artifacts of fixed scalp topography 
occurring regularly throughout the data, such as those due to 
eye movements and muscle contractions [14]. Conversely, ICA is 
much less appropriate to clean sleep EEG. The reason is that ICA 
is not effective at isolating rare, non-stationary artifacts or arti-
facts with variable scalp topography [14], such as those caused 
by unique, idiosyncratic movements occurring during sleep. As 
a result, aggressive manual removal of inherently ambiguous 
independent components (ICs) is often required to denoise the 
data—a process that, besides being time-consuming, results in 
unavoidable signal loss. Finally, traditional polysomnographic 
(PSG) sleep recordings only use 4–6 electrodes, which makes ICA 
cleaning unfeasible.

An increasingly used algorithm to clean EEG automatically is 
“Artifact Subspace Reconstruction” (ASR) [15–18]. ASR is becom-
ing popular for its ability to effectively and automatically remove 
large-amplitude artifacts, regardless of their scalp topography or 
consistency throughout the data [17, 19–22]. ASR is widely used 
to clean wake EEG, complementing and often replacing standard 
ICA cleaning [23–30]. As the method can effectively clean even 
the noisiest EEG segments, ASR allows the user to retain and ana-
lyze continuous sleep EEG containing large artifacts associated 
with arousals and awakenings [31], rather than rejecting these 
segments. Although developed for high-density EEG (>64 elec-
trodes [17]), recent work has demonstrated effective ASR cleaning 
with as few as 4–8 electrodes [32, 33] suggesting that the tech-
nique is suitable even for the low-density EEG montages used in 
clinical polysomnography.

Although these ASR features seem highly appropriate to deal 
with whole-night EEG data, the effectiveness of ASR in cleaning 
whole-night EEG has never been systematically validated. This 
neglect is important, given that ASR is starting to be used in sleep, 
but with the parameters recommended for wake EEG [31, 34–37]. 
This poses an urgent issue because this approach is likely to give 
incorrect results due to the important structural differences 
between wake and sleep EEG. For example, sleep graphoelements 
(e.g. slow waves [SWs], including delta-waves and K-Complexes 
[KCs] [38]) are far larger than those observed in wake. As a result, 
a typical ASR cutoff of 20–30 SD may result in the removal of SWs. 
Additionally, both the frequency of occurrence and the ampli-
tude of these graphoelements vary substantially across sleep 
stages [38]. This makes standard ASR inappropriate because ASR 
requires a crucial calibration step in which relatively artifact-free 
data are used to define thresholds for the identification of artifac-
tual EEG components to be removed [17]. As such, ASR calibrated 
with data coming from multiple sleep stages may lack the sen-
sitivity to remove smaller-amplitude artifacts in REM sleep and, 
perhaps worse, may remove large-amplitude SWs characteristic 
of non-REM sleep.

To address these issues, we applied ASR to whole-night EEG 
recordings using a variety of parameters and approaches. We 
quantified the effects of a wide range of ASR cutoff values on SW 

amplitude and several other metrics. In Analysis 1, we tackled 
the problem of calibration by splitting the whole-night record-
ing by sleep stage, before applying ASR independently to each 
stage. In Analysis 2, we implemented a more sophisticated ASR 
calibration procedure: segmenting the data into chunks of arbi-
trary length (from 2 min to the whole night) regardless of sleep 
stage and applying ASR to each chunk separately. Running the 
ASR on the whole-night recording likely results in inappropriate 
calibration across different sleep stages, while running the ASR 
on shorter chunks of data should minimize this problem and 
improve cleaning.

We used these results to define two cleaning pipelines appro-
priate for sleep, which we make freely available as a plugin for 
EEGLAB (Dusk2Dawn; available from github.com/rsomervail/
dusk2dawn). The plugin includes an accessible graphical inter-
face to allow users to apply these pipelines to their data and val-
idate the results themselves.

Materials and Methods
Whole-night EEG data
We used approximately 70 h of high-density, whole-night EEG 
data from two previous studies [39, 40]. EEGs were recorded using 
a 256-channel EGI system sampled at 500 Hz from a whole night 
of natural sleep (with no interruptions or stimuli) in 10 healthy 
participants. Sleep stages were scored manually using consec-
utive 30 s epochs according to standard criteria [41] by author 
JC, and classified as belonging to one of the following five stages: 
wake, REM, N1, N2, or N3. Before ASR, EEG data were first re-refer-
enced to the average of both mastoids. The data were then band-
pass filtered between 0.5 and 40 Hz using a minimum-phase finite 
impulse response (FIR) filter, and the DC component was removed 
from each channel to ensure zero-mean signals (a prerequisite 
for both ASR and ICA decomposition).

The Artifact Subspace Reconstruction (ASR) 
algorithm
ASR relies on a preliminary calibration of segments of relatively 
clean baseline EEG data. These segments of baseline data can either 
be found automatically or chosen manually. Automatic identifica-
tion is based on channel-wise signal variance [20]. Specifically, the 
algorithm computes the z-scored root-mean-square values (in 1 s 
windows) and checks that these z-scores fall within the −3.5 to 5.5 
interval in more than 92.5% of channels [20].

Principal Component Analysis (PCA) is subsequently per-
formed on these baseline data, and the means and standard devi-
ation (SD) of the root-mean-square timecourses of the resulting 
“clean” PCs are used to define a threshold for each of these com-
ponents [17, 20]. ASR then performs a series of PCA decomposi-
tions on small successive EEG segments of the data to be cleaned 
(these segments are typically 0.5 s, but their width must be larger 
than 1.5 × number of channels /sampling rate; see Table 1). In 
this second step, the PC thresholds defined in the initial baseline 
step are first projected onto the PC subspace of the segment to 
be cleaned. Then, the variance of the resulting PCs from the data 
to be cleaned is compared to the PC thresholds defined in the 
initial baseline step: if a PC exceeds those thresholds by a user-de-
fined factor (e.g. 20 SDs) that PC is removed from the data. The 
non-artifactual underlying signal is finally reconstructed using 
the remaining components (i.e. the PCs not exceeding the thresh-
olds identified in the initial baseline PCA performed on clean 
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data) and, crucially, the mixing matrix derived from the first PCA 
decomposition of the baseline data. Note that this two-layered 
structure of the algorithm, in which the data are reconstructed 
from both the remaining PCs and the mixing matrix from the ini-
tial PCA on the baseline data, means that ASR is not merely a 
sliding-window PC rejection algorithm. A more formal description 
of the function of the ASR algorithm is provided by Chang et al. 
(2020) [20].

ASR pipelines
We used custom MATLAB functions as well as the clean_rawdata 
EEGLAB plugin to apply two distinct ASR pipelines in Analyses 1 
and 2, respectively. In each Analysis, we tested a range of ASR cut-
offs (Analysis 1: from 5 to 60 SD, in increments of 5 SD; Analysis 
2: from 10 to 60 SD, in increments of 10 SD; note that the lower 
the number the more severe the cutoff). In Analysis 1, we split 
the whole-night EEG data by sleep stage and performed ASR and 
validation separately on each of the three tested stages (N2, N3, 
and REM). Calibration data were chosen automatically by the 
ASR algorithm [20], and their average length across participants 
was 54 ± 9% (45–69%) [N2], 53 ± 9% (45–67%) [N3], and 53 ± 8% 
(45–66%) [REM]. In Analysis 2 we did not split the EEG data by 
sleep stage, but instead performed ASR on overlapping chunks 
ranging from 2 min to the whole night (six chunk lengths tested; 
1 min overlap) without respecting sleep stage boundaries, and 
then averaged the resulting signals in the overlapping regions to 
reduce boundary discontinuities [42]. Note that these chunks do 
not refer to the sliding window of the ASR algorithm itself; rather 
the entire process of ASR calibration and cleaning was performed 
separately on each chunk. This approach has been used effec-
tively to clean wake EEG with embedded episodes of microsleep 
[42–44] and has been shown to perform better than standard ASR 
with several wake EEG datasets [45]. The resulting cleaned data 
were finally split into sleep stages as in Analysis 1, and valida-
tion was performed on each stage separately. In both pipelines, 
we used an ASR window length (i.e. the window length of the ASR 
algorithm itself) of 3 s. This value is longer than what is typically 
used in wake (e.g. 0.5–1 s), and we chose it as a result of a prelim-
inary analysis in which we varied its length systematically, under 
the reasoning that these typical window lengths were likely too 
short for sleep slow waves (Supplementary Figure S1). All other 
ASR parameters were kept at their default values (see Table 1).

Validation of ASR cleaning
In Analysis 1, we explored the effects of ASR on the quality of a 
subsequent ICA decomposition of the data. This was done to (1) 
quantify how effective ASR was at removing artifacts that are 
difficult to isolate with ICA, and (2) assess the ease of manual 
selection of artifactual ICs should the user choose to perform 
a subsequent ICA to remove remaining artifacts (e.g. muscle 
artifacts). This approach has been used previously to assess 
the performance of ASR cleaning in wake [20, 22]. We, there-
fore, computed ICs (using the runica algorithm implemented in 
EEGLAB) for each dataset before and after ASR. For each ICA 
output, we automatically labeled each of the resulting ICs using 
the IClabel plugin for EEGLAB [20, 46] as one of four categories 
(neural activity, physiological artifacts, recording artifacts, 
unknown). Finally, we calculated both the percentage of ICs 
belonging to, as well as the total variance explained by, each 
category.

In Analysis 1 we also explored the effect of ASR on brain oscil-
lations and noise within different frequency bands. To this end, 
we computed the spectral decomposition using the Fast Fourier 
Transform, for each channel and sleep stage, before and after 
ASR. The resulting amplitudes were summarised as the mean 
of each of the following frequency bands: 1–4 Hz (delta), 4–8 
Hz (theta), 8–12 Hz (alpha), 12–16 Hz (sigma), 18–30 Hz (beta), 
and 30–45 Hz (gamma). These amplitudes were finally averaged 
across channels and expressed as a percentage of the amplitude 
in the raw data. We defined the delta band as 1–4 Hz (rather than 
the 0.5–2 Hz range often used in clinical sleep research) as this 
range includes the frequency of K-complexes. Also, the 0.5–1 Hz 
frequency content is partly removed by the 0.5 Hz high-pass filter 
applied before ASR (due to the 0.25–0.75 Hz transition band).

In both Analysis 1 and 2, we explored the effects of ASR on 
the amplitude of large sleep graphoelements. To this end, we first 
extracted SWs from a version of each EEG dataset cleaned manu-
ally, by interpolating bad channels and performing ICA. SWs were 
identified using a validated algorithm as negative deflections 
between two consecutive zero-crossings separated by 0.25–1 s 
[31, 38, 47, 48]. We then used the timestamps of these validated 
SWs to isolate the same SW events in both raw and ASR-cleaned 
data. We quantified the SW amplitude by averaging all identified 
SWs and taking the mean of a 100-ms long time window centered 
on the negative peak. To quantify SW consistency (i.e. a proxy of 

Table 1.  Summary of parameters used in each Analysis.

ASR parameters Analysis 1 Analysis 2

Cutoff (SD) {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60} {10, 20, 30, 40, 50, 60}

Max dimensions 2∕3 2∕3

Window length (s) 3 3

Step-size (samples) 768 (window length/2) 768 (window length/2)

Reference max bad channels 0.075 0.075

Reference tolerances (SD) −3.5, 5.5 −3.5, 5.5

Reference window length (s) 2 2

Use Riemmanian modification False False

Use GPU True True

Max memory 5 GB 7 GB

Chunk length (min) n/a {2, 4, 8, 16, 32, 64, whole-night}

Chunk overlap (min) n/a 1
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signal-to-noise ratio), we performed point-by-point t-tests against 
zero across trials and found the median t-value within the time 
window of interest.

We also estimated the computation times for each ICA and 
ASR step for each dataset. All analysis was performed using 
MATLAB (version 2021a) running in Windows 10 Pro (installed 
on a Samsung PM981a SSD) on a Dell Precision 5820 PC, with an 
Intel i9-10940X CPU (3.3 GHz, 14 cores) and 128 Gb RAM (2666 
MHz).

Results
Analysis 1—Calibration of ASR separately for 
each sleep stage
Removal of typical sleep artifacts using ASR
Figure 1 shows EEG artifacts typically observed in stage N2 
and REM, before and after ASR cleaning. Artifacts caused by 
both bodily movements during arousal periods and sweat were 
effectively removed, even when applying ASR with a fairly mild 
cutoff of 35 SD. Some residual high-frequency muscle artifacts 
remained in the arousal time window. These small-amplitude 

muscle artifacts are, however, easy to isolate and remove with 
a subsequent ICA [14].

Effects of ASR on quality of ICA decomposition
Figure 2 shows the effects of ASR on two metrics of the ICA qual-
ity: (1) the percentage of ICs belonging to each category, and (2) 
the variance explained by each IC category.

In all tested sleep stages, more severe ASR cleaning strongly 
increased the variance explained by ICs that were not categorized 
as “unknown.” The preliminary ASR cleaning, therefore, allowed a 
more effective ICA decomposition, less dominated by ambiguous 
ICs arising from large-amplitude and highly topographically-var-
iable artifacts. In other words, ASR reduced underfitting in the 
ICA, allowing individual ICs to more effectively isolate remaining 
components in the data.

In N2 and REM, ~15% of the variance associated with ICs labe-
led “recording artifacts” was removed by applying ASR at the 
mildest tested cutoff (60 SD). In REM alone, variance from “phys-
iological artifacts” ICs fell monotonically with increasing ASR 
severity beyond a cutoff of ~50 SD, due to the gradual removal 
of eye movement artifacts. However, the variance never reached 
0%, showing that ASR cannot remove entirely these artifacts 

Figure 1.  Examples of sleep EEG before and after ASR cleaning. Segments of continuous EEG before (left column) and after (right column) ASR 
cleaning using a relatively mild cutoff of 35 SD. A subset of the 255 EEG channels is displayed from the frontal (F), central (C), parietal (P), and occipital 
(O) regions. In each plot, vertical arrows show time points associated with the displayed scalp topographies. Note the highly variable topographies of 
the large artifacts arising from arousal and sweating.
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without also removing neural activity. Thus, ASR was not effective 
at totally removing artifacts caused by eye movements or single 
noisy electrodes.

Increasing the ASR severity also reduced the percentage of 
“unknown” ICs, although this effect was driven by increasing not 
only the percentage of “neural activity” ICs but also “recording arti-
facts” ICs (especially in N2 sleep). This result indicates that, although 
the largest among these artifacts were removed by ASR, those that 
remained were more effectively isolated with ICA. This observation 
can also be explained by reduced ICA underfitting, due to artifacts 
consequent to noisy electrodes being more effectively isolated as 
separate ICs due to the lower dimensionality of the data.

ASR and ICA computation times
Figure 3 shows the time necessary to run ASR and ICA at each 
tested cutoff value. In all sleep stages and regardless of cutoff, 
ASR was faster than ICA by a factor of 2–5, taking only ~21 min 
for the whole N2 stage, and ~15 min each for N3 and REM. This 
shows that ASR does not add substantial time to the EEG pre-
processing pipeline. This difference was more pronounced for the 
N2 stage, likely due to its longer length. Expectedly, when using 
the standard ASR window of 0.765 s (Supplementary Figure S2), 
ASR computation times were slightly faster than using a window 
of 3 s, albeit at the cost of worse SW reduction (Supplementary 
Figure S1). In general, cleaning with ASR also reduced the com-
putation time of the subsequent ICA, with the only exception of 
an increase of computation time below ASR cutoffs of 30 SD in 
the REM stage of one participant. Note that the ICA computa-
tion times shown in Figure 3 and Supplementary Figure S2 do 
not include the extensive additional time necessary to manually 
select the ICs to be removed from the data.

Effects of ASR on brain oscillations
Figure 4 shows, for each sleep stage and ASR cutoff, the change of 
power compared to raw data. ASR primarily removed power in the 
delta band (1–4 Hz) across sleep stages. In REM the removal of delta 
power was particularly dramatic (~50%) even at very mild levels 
of ASR cleaning (e.g. a cutoff of 60 SD; Figure 4, right plot), likely 
because REM delta power mostly reflects large artifacts. All other 
frequency bands were removed by 5–10% across sleep stages.

Effects of ASR on slow waves
To test the selectivity of ASR toward removing artifacts, we com-
pared the amplitude and consistency of SWs before and after 
ASR. Figure 5 shows SW amplitude and consistency at each ASR 
cutoff value, separately for each sleep stage.
Applying ASR with the default cutoff of 5 SD resulted in a dra-
matic reduction of SW amplitude in both N2 and N3 (Figure 5, 
top row). Even the fairly mild cutoff recommended for wake data 

Figure 2.  Effects of ASR on subsequent ICA decomposition (Analysis 
1). Each IC was labeled automatically using the EEGLAB IClabel plug-in. 
The top plots of each panel show the total variance explained by 
identifiable ICs (left) and each IC category (right), for each ASR cutoff. 
The bottom plots of each panel show the percentage of identifiable 
ICs (left) and of ICs belonging to each category (right). Gray lines show 
individual participants and colored lines show the group means. 
Shaded areas represent SD across participants. Green boxes highlight 

the recommended ASR cutoff range (see Discussion). Note how, in all 
sleep stages, increasing ASR severity drastically increased the variance 
explained by identifiable ICs. This effect was largely driven by the 
increased variance explained by “neural activity” ICs at the expense 
of “unknown” ICs. ASR also removed variance from the “physiological 
artifacts” and “recording artifacts” categories, especially in REM. These 
results show that ASR effectively cleans the data by removing large 
and unique artifacts with highly-variable scalp topographies and 
thereby reducing ICA underfitting. Consequently, ICA isolates better the 
remaining neural activity and artifacts.
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(20–30 SD [20]) resulted in a substantial reduction of SW ampli-
tude in N2. At more liberal cutoffs (>30 SD), however, SW ampli-
tude was largely preserved, and the small decrease in amplitude 
at the highest cutoffs (50+ SD) was likely due to the removal of 
large-amplitude artifacts distorting the SW means.
Despite the reduction of SW amplitude with progressively more 
severe ASR cutoffs, their consistency increased (Figure 5, bottom 
row). Visual inspection suggests that this consistency increase 
was driven by the removal of positive amplitude artifacts coincid-
ing with the negative SW peak (Figure 5, insets). In other words, 
the SW signal-to-noise ratio was increased after ASR despite the 
overall reduction of SW amplitude. However, at the most severe 
cutoffs (e.g. <30 SD) this SNR increase came at the cost of a more 
substantial SW removal.

Importantly, the amount of amplitude reduction varied across 
SWs: some individual SWs were entirely removed despite a fairly 
small reduction of the average SW amplitude. This finding is illus-
trated in Figure 6, which shows SWs from a single participant. Note 

how the SW average is progressively reduced in amplitude with 
increasing ASR severity, while the exemplary individual SW abruptly 
halved its amplitude and then disappeared at ASR cutoffs of 5 and 
25 SD, respectively. This indicates that even at mild cutoffs such 
as 45 SD, individual SWs can be dramatically reduced, while their 
across-trial average amplitude is only reduced by ~10–20%. This is 
problematic, given that individual SWs are far more informative 
than average SW amplitude, as they can reflect spatial and temporal 
dynamics throughout the night of sleep [38, 49–51].

Analysis 2—Calibration of ASR within a sliding 
window vs whole-night ASR
Length of ASR calibration data
In Analysis 2, we tackled the issue of calibration by performing 
ASR on overlapping chunks of data. We explored a wide range 
of chunk lengths (from 2 min to the whole night) and measured 
the resulting length of calibration data against the recommended 

Figure 3.  Computation times for ASR and ICA (Analysis 1). Average computation times for ICA (red) and ASR (blue) for each tested cutoff and sleep stage. 
Shaded areas represent the standard deviation across participants. ASR was 2–5 times faster than ICA at every cutoff and sleep stage. This difference was 
most pronounced in N2. Note that computation times shown here reflect 255-channel EEGs, and are therefore much longer than for most EEG recordings. 
Also, note that the increase of ICA computation time in REM at ASR cutoffs more severe than 30 SD was driven by a single participant.

Figure 4.  Effects of ASR on brain oscillations (Analysis 1). The amplitude of EEG frequency bands across ASR cutoffs is expressed as a percentage 
of raw data amplitude. In all sleep stages, ASR mostly reduced delta power (1–4 Hz), corresponding to large amplitude artifacts and slow waves. The 
removal of delta power in REM was especially dramatic (~50%) even at very mild levels of ASR cleaning (e.g. a cutoff of 60 SD), likely because in REM 
delta power mostly reflects large artifacts. All other frequency bands were removed by 5–10% across sleep stages.
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duration of 1 min (see documentation of the clean_rawdata 
plugin). When using short chunks of 2–4 min, 14 ± 6% and 84 ± 9% 
of chunks (2- and 4-min long, respectively) did not provide >1 
min of calibration data (Table 2). Thus, our results suggest that 
when calibrating using chunks of 2 or 4 min there is a danger 
of not obtaining sufficiently-long calibration data. This should be 
checked for each dataset. 

Computation times of sliding-window ASR
In Analysis 2, the use of ASR on overlapping EEG chunks made 
computation times longer than in Analysis 1. Figure 7 shows the 
time necessary to run ASR for the whole night of sleep at each 
chunk length. Predictably, the smaller the chunk length, the 
longer the average computation time, from ~45 min to perform 
ASR on the whole night in a single chunk to ~130 min to perform 
ASR on all 2-min chunks with a 1-min overlap. Computation time 

did not vary substantially between chunk lengths of 8 and 64 min. 
Despite the increase in computation time, sliding-window ASR 
was never longer to run than ICA run separately on N2, N3, and 
REM in Analysis 1 (~200 min; Figure 3).

Effects of sliding-window ASR on slow waves
In Analysis 2 we determined whether calibrating ASR using shorter 
sliding windows would improve its selectivity towards detecting 
artifacts, and thereby remove fewer SWs. We also explored how 
ASR on whole-night data compares to both the sliding window 
approach (Analysis 2) and the ASR performed separately on each 
sleep stage (Analysis 1).

Figure 8 shows the effects of sliding windows and whole-night 
ASR on SW amplitude and consistency. As in Analysis 1, mean 
SW amplitude decreased non-linearly with ASR severity, with 
smaller SW amplitudes for more severe cutoffs. In N2, there 

Figure 5.  Effects of ASR on slow wave amplitude and consistency (Analysis 1). SW amplitude (top plots) and consistency (bottom plots) as a 
function of ASR severity. Colored lines show group means, and gray lines individual participants. Shaded areas show SD across participants. Green 
boxes indicate the recommended ASR range (see Discussion). Insets show representative single SWs from one participant. SW amplitude decreased 
non-linearly with increasing ASR severity. Very severe ASR resulted in substantial SW removal and loss of consistency in the N2 and N3 stages. 
However, at milder ASR severity (i.e. above 15 SD), SW consistency improved. Insets show that this was likely due to the removal of positive amplitude 
noise obscuring the negative SW peak. Thus, ASR improves the SW SNR, but at the cost of reducing the mean SW amplitude, especially at more severe 
ASR cutoffs.
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was little variability in the relationship between SW amplitude 
and ASR cutoff across chunk lengths, probably because N2 com-
prised the majority of the data used for calibration, regardless 
of chunk length. In N3, however, the effect of chunk length was 
more drastic: when sliding-window ASR was applied to either 
the whole-night or longer chunks (i.e. 32–64 min) the SW ampli-
tude reduction with increasingly-severe ASR cutoffs was more 
pronounced than for shorter chunks. This suggests that, in N3, 
running the sliding-window ASR with short chunks (2–16 min) 
resulted in better calibration than running the ASR for the whole 
night. Compared to Analysis 1, the ASR applied to short chunks 
resulted in a modest improvement of N2 and N3 SW amplitude 
preservation (compare Figure 5 with the 16- to 2-min chunk 
lengths columns of Figure 8).

Perhaps counterintuitively, in N3 ASR performed on either 
the whole-night or the longest chunk lengths resulted in 
enhanced SW consistency at middle cutoffs, compared to 
when ASR was performed separately by sleep stage (Analysis 
1) or on shorter chunk lengths (Analysis 2). This increase in SW 
consistency mirrors the dissociation between SW amplitude 
and consistency observed in Analysis 1 (Figure 5). Specifically, 
in the whole-night and long-chunk ASR, the calibration was 
dominated by N2 sleep, which generally has lower-amplitude 
signals, and therefore ASR resulted in more severe thresholds 
for artifact removal at the same cutoff values. Consequently, a 
higher number of the larger SWs present in N3 were removed or 
reduced in amplitude, while artifacts of opposite polarity were 
also removed, leading to an overall SNR increase despite the 

Figure 6.  Exemplary single slow wave and average from the N2 stage of one participant (Analysis 1). Examples of individual (left) and average 
(right) SW waveforms from one participant, without ASR and at three levels of ASR severity (cutoffs: 5, 25, and 45 SD). Although the SW was still 
visible in the average even at the most severe ASR cutoff (right), an individual SW was already removed with less severe cutoffs (left). This sacrifice of 
individual SWs must be considered when aiming to perform single-trial SW analysis.

Table 2.  Analysis 2—percentage of data chunks with an ideal minimum amount of clean data for ASR calibration (at least 1 min)

Subject Chunk duration

Whole-night (%) 64-min (%) 32-min (%) 16-min (%) 8-min (%) 4-min (%) 2-min (%)

1 100 100 100 100 100 94 24

2 100 100 100 100 100 85 9

3 100 100 100 100 100 86 15

4 100 100 100 100 100 83 7

5 100 100 100 100 100 80 10

6 100 100 100 100 99 83 13

7 100 100 100 100 98 97 16

8 100 100 100 100 100 69 22

9 100 100 100 100 100 92 8

10 100 100 100 100 100 74 13

Mean 100 100 100 100 100 84 14

SD 0 0 0 0 1 9 6
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reduction of SW mean amplitude (see insets of Figure 5). The 
results of Analysis 1 indicate that these smaller artifacts, whose 
amplitude is similar to that of the largest SWs, can be removed 

more selectively with ICA, and a more severe ASR cleaning con-
sequent to using N2 as a source of baseline data is inappropri-
ate to remove them.

Figure 7.  Computation times of sliding-window ASR (Analysis 2). Computation times for sliding-window ASR were performed with each chunk 
length. Shaded areas show standard deviation across participants. The smaller the chunk length, the longer the computation time, from ~45 min to 
perform ASR on a single whole-night chunk to ~130 min to perform ASR on 2-min chunks. At chunk lengths between 64 and 8 min, computation time 
did not vary substantially. Note that all computation times were measured for a 255-channel EEG dataset, while lower-density EEG data would entail 
much shorter computation times. Regardless of chunk duration, ASR was never longer to compute than ICA performed separately on N2, N3, and REM 
stages in Analysis 1 (~200 min; Figure 3).

Figure 8.  Effects of sliding-window ASR on slow wave amplitude and consistency (Analysis 2). Each panel shows SW amplitude (top rows) and 
consistency (bottom rows) after sliding-window ASR performed at different cutoffs (x-axis) and chunk lengths (columns). Colored lines show group 
means; gray lines show individual participants. Shaded areas show standard deviation (SD) across participants. Recommended ASR cutoff ranges 
are highlighted in green (see Discussion). As in Analysis 1, SW amplitude decreased non-linearly with increasing ASR severity. In N2, there was little 
variability in the relationship between SW amplitude and ASR cutoff across chunk lengths. In N3, the effect of chunk length was more drastic: when 
sliding-window ASR was applied to long chunks (e.g. 32–64 min) or the whole night, SW reduction with increasingly-severe ASR cutoffs was more 
pronounced compared to what was observed for shorter chunks. Thus, sliding-window ASR using shorter chunks yields a better calibration than 
running ASR on whole-night data. In N3, whole-night and long-chunk ASR enhanced SW consistency at middle cutoffs compared to shorter chunk 
lengths. This was caused by the calibration being dominated by the smaller voltage of N2, resulting in the removal of more noise but also of larger 
SWs.
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Discussion
The study of electrical brain activity during sleep has produced a 
wealth of novel information about the function of sleep in health 
and disease. Many artifacts, however, contaminate whole-night 
sleep EEG. Their removal entails time-consuming user-dependent 
decisions and loss of potentially meaningful data. In this study, 
we explored the effects of an increasingly popular EEG cleaning 
method—ASR [17]—on whole-night sleep datasets. We describe 
an ASR implementation that allows a rapid, efficient, and unbi-
ased cleaning of EEG artifacts, with minimal loss of sleep SWs. 
With the appropriate parameters, ASR adaptively removes arti-
facts that would otherwise demand the rejection of whole seg-
ments of data. These artifacts would be poorly isolated by ICA, 
the most frequently used approach for cleaning high-density 
EEG data.

Preliminary ASR drastically improves 
subsequent ICA cleaning
Traditional ICA-based cleaning of whole-night EEG is a labo-
rious and time-consuming process, entailing a large number 
of subjective decisions [14]. This user dependence is a large 
source of variability in brain imaging data, and efforts to move 
towards more automatic preprocessing are increasing across 
fields and neural measuring techniques [9, 17, 35, 52, 53]. We 
demonstrate that when preceded by ASR, ICA decomposition 
yields ICs more easily classifiable as neural activity, physio-
logical artifacts, and recording artifacts (Figure 2). This vast 
improvement in IC classifiability suggests that after prelimi-
nary ASR, ICA cleaning could be entirely automated. The two 
methods complement each other well, with the initial ASR 
removing the large and non-stationary artifacts, and the sub-
sequent ICA removing smaller and more consistent artifacts 
caused by, for example, muscle activity, eye movements, and 
individual noisy electrodes. Given that after ASR the classifi-
cation and removal of artifactual ICs can be easily automated, 
another advantage of ASR is the substantial time saved on dif-
ficult and inherently ambiguous user decisions. Ideally, auto-
matically labeled ICs should be reviewed manually, although 
this procedure becomes far easier and more rapid when 
preceded by ASR cleaning. Unsurprisingly, ASR and ICA are 
starting to be combined in both wake [51, 52] and sleep [31, 32].

ASR must be performed before, not instead of or 
after ICA cleaning
We have demonstrated that ASR is a good complement to ICA. We 
note that ASR must not follow ICA, as the IC removal will reduce 
the data rank and interfere with the ASR algorithm. Furthermore, 
we do not recommend applying ASR alone, as many artifacts such 
as muscle activity, eye movements, or individual noisy channels, 
are not removed using the ASR cutoff we recommend (30–45 SD; 
see the following section), and even with more extreme cutoffs of 
5–15 SD [the reader should remember that the smaller the cutoff, 
the more severe the ASR]. The application of ASR using severe 
cutoffs to avoid the subsequent ICA would not only fail to effec-
tively remove small and consistent physiological and recording 
artifacts but would also result in a substantial signal loss (see 
following section). Although these artifacts only explain a small 
portion of the total variance (Figure 2), likely due to the high num-
ber of EEG electrodes and the choice of GFP as a variance calcula-
tion method, they can still obscure or distort many sleep-related 
signals of interest.

Preservation of sleep graphoelements relies on 
the correct choice of ASR cutoff and calibration 
data
Given that the range of amplitudes of physiologically-meaningful 
signals in sleep is far larger than in wake, we hypothesized that the 
ASR cutoffs used in wake may not be appropriate for preserving large 
sleep graphoelements such as SWs. When considering this issue it 
is important to remember that ASR cutoffs are expressed relative to 
clean baseline data used for calibration. Thus, both factors (the ASR cut-
off and the amplitude of calibration data) determine the final abso-
lute thresholds to identify artifacts. Since there is a vast amplitude 
variability both between and within sleep stages [1–3, 38], the choice 
of both factors must be carefully considered to prevent signal loss. 
We discuss the effects of these two factors in the following sections.

ASR cutoffs recommended for wake are 
unsuitable to process sleep EEG
Regardless of the choice of calibration data, the ASR cutoffs rec-
ommended for wake EEG (20–30 SD [20];) resulted in dramatic 
SW removal in both N2 and N3 sleep stages (Figures 5 and 8). 
This severe cleaning improved SNR (indexed by SW consist-
ency; Figures 5 and 8) but at the cost of losing the larger SWs 
(see insets in the left panel of Figure 5). This SW sacrifice was, 
however, unnecessary since the small artifacts removed by ASR 
with the wake cutoffs could have been selectively removed by 
the subsequent ICA (see section ASR must be performed before, not 
instead of or after ICA cleaning). Thus, the ASR cutoffs of 20–30 SD 
recommended for wake should never be used when studying the 
large graphoelements of non-REM sleep. As detailed later, we 
recommend using milder cutoffs of 30–45 SD in non-REM sleep 
to optimally remove artifacts while preserving SW amplitudes. 
Conversely, ASR cutoffs closer to wake-like severity (e.g. 20–30 
SDs) can be chosen to clean REM sleep.

More temporally local ASR calibration mitigates 
the removal of slow waves
As discussed above, the choice of calibration data also deter-
mines the thresholds to identify artifactual data. Consequently, 
applying ASR to a whole-night sleep dataset presents an issue: 
since there is substantial variability in the amplitudes of brain 
signals across different sleep stages, the thresholds determined 
from the calibration data may not be appropriate when applied to 
the whole night. To deal with this issue we explored two different 
strategies that varied how temporally-local the calibration data 
was concerning the data being cleaned. In Analysis 1, we applied 
ASR separately to each sleep stage. In Analysis 2, we applied ASR 
separately to overlapping chunks of data (duration ranging from 
2 to 64 min), as well as to the whole night.

In N3, the SW loss was most pronounced when ASR was 
applied to the whole night or long chunks of 32–64 min (Figure 8, 
left columns), and it was substantially reduced when the cali-
bration was performed either separately for that stage, or the 
whole night but using shorter chunks of 2–16 min. Conversely, 
the difference in SW loss between the one-calibration-for-each-
stage approach of Analysis 1 and the shorter-chunks approach of 
Analysis 2 was small, with the short-chunk calibration resulting 
in only slightly better SW preservation (compare Figures 5 and 
8). This improvement was due to the more temporally-local cali-
bration (i.e. a calibration performed using baseline data closer 
in time to the time interval to clean)—which better accounts for 
the variability of EEG power within and between individual sleep 
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cycles. The impact of power variability between individual cycles 
of each given sleep stage can be ameliorated by simply running 
ASR on each individual cycle of the stage, while reducing the 
impact of power variability within each individual cycle of a stage 
is exclusively a benefit of the shorter-chunk method.

In N2, in contrast, the different options for choosing the cali-
bration data had little effect on SW loss. This observation is 
explained by the fact that calibrating using either the whole night 
or long chunks implies that the calibration data are dominated by 
the N2 stage.

The SNR of SWs in stage N3 was improved using more severe 
cutoffs, as well as when ASR was calibrated using the whole night. 
However, this was again merely due to inappropriate calibration 
given that whole-night EEG is dominated by the N2 stage. Since 
N2 SWs have a smaller amplitude than N3 SWs, the resulting ASR 
rejection thresholds were lower, and more of the larger N3 SWs 
were removed.

In summary, the choice of calibration data should be made 
considering the large EEG variability throughout the night, to 
make ASR cleaning as adaptive and reliable as possible. This can 
be achieved either by running ASR on relatively short and over-
lapping chunks of data (4–16 min long) or separately for each 
sleep stage. Both approaches are preferable to running the ASR 
on the whole-night EEG.

Summary of recommended ASR parameters
Considering all the above, when using ASR to clean whole-night 
EEG we recommend using (1) a cutoff between 30 and 45 SD, i.e. 
much less severe than in wake, together with (2) a more tem-
porally-local calibration, either applying ASR separately to each 
sleep stage or using a sliding window (4–16 min long). The tem-
porally-local calibration yields more consistent results across 
sleep stages with the same cutoffs. When using the sliding-win-
dow method it is important to ensure sufficiently long calibration 
data (ideally >1 min). The recommended range of 30–45 SD strikes 
a good balance between effective artifact removal and sufficient 
SW preservation (Figures 2, 5, and 8).

Within this range, the deciding the best ASR cutoff depends 
on the physiological or clinical question. For example, should the 
assessment of SW amplitude be of particular importance, we sug-
gest using milder cutoffs, which will still clean the largest EEG 
artifacts while leaving the SWs relatively unaffected (Figures 2 
and 5). This reasoning is particularly relevant when specifically 
investigating very large amplitude SWs like KCs: compared to 
smaller types of SWs, KCs will be removed by milder ASR cutoffs. 
Furthermore, given the variability in SW amplitude across stages 
and participants, we emphasize the need to test the effects of a 
range of ASR parameters on an EEG sample containing known 
SW events (identified either manually or by using a well-validated 
algorithm). More generally, we recommend testing and visualiz-
ing the effects of ASR on a subset of data to ensure the balance 
of signal loss and noise removal is appropriate for each given 
research question.

We finally note two points. First, although all results pre-
sented here are based on data recorded from healthy adult 
participants, they also apply to the majority of sleep disorders. 
Indeed, only in individuals with drastic variations of EEG sig-
nal-to-noise ratio, such as children or patients with encepha-
lopathies or focal brain lesions, the ASR performance will differ 
from our results. In these cases, we recommend tuning the cut-
off to balance the preservation of large-amplitude brain signals 

and the removal of noise. Second, in addition to the parameters 
tested here (i.e. sliding window length, ASR cutoff, ASR window 
length) several other parameters (such as the tolerance thresh-
olds for calibration data selection) could affect the ASR clean-
ing of sleep data, and specifically the removal of SWs. Although 
testing these other parameters is beyond the scope of the cur-
rent work, users can exploit the flexibility of Dusk2Dawn to 
tweak them and thereby achieve optimal cleaning, as described 
in the following paragraph.

Dusk2Dawn—an open-source EEGLAB plugin to 
apply ASR to whole-night EEG data
To allow easy implementation of ASR with whole-night sleep 
data (orany long-duration EEG data, see below), we developed 
Dusk2Dawn, an open-source EEGLAB plugin with a simple and 
intuitive graphical interface (freely available from: github.com/
rsomervail/dusk2dawn and the EEGLAB plugin downloader). 
The plugin contains a set of wrapper functions for the orig-
inal ASR functions, allowing the user to run ASR using either 
of the two pipelines described above (1) splitting the data by 
sleep stage using imported stage scoring events (as in Analysis 
1), or (2) blindly running the ASR in successive overlapping 
chunks (as in Analysis 2). A major advantage of this plugin 
is that it allows the user to test a range of parameters (with 
a maximum of three explored dimensions for any one run-
through) and then validate the results of each run-through by 
testing the effects of ASR on (i) subsequent ICA decomposition, 
(ii) SW amplitude and consistency, and (iii) spectral power of 
cleaned data. Due to the flexibility of Dusk2Dawn, the user can 
explore a range of ASR parameters without requiring the cod-
ing expertise or time necessary to program custom pipelines 
manually. The plugin can also be extended to support custom 
validation functions, for instance allowing the user to explore 
the effects of ASR on sleep spindles. Importantly, the flexibility 
provided by this plugin makes it useful to clean any long-dura-
tion recordings comprising a variable range of brain states and 
signal-to-noise levels, such as whole-day EEG or electrospino-
gram (ESG) collected during naturalistic experiments entailing 
subject movement [54].

Conclusions
ASR can be a powerful tool for the automatic and rapid cleaning 
of whole-night sleep EEGs. However, given the large variability of 
amplitude throughout the night, ASR must not be used with the 
parameters recommended for wakefulness. We demonstrated a 
procedure that makes ASR suitable for sleep data, using milder 
cutoff values of 30–45 SD, and finding an appropriate baseline by 
separating the data into smaller chunks. These approaches are 
implemented into Dusk2Dawn, a user-friendly EEGLAB plugin 
with a graphical interface.

Supplementary material
Supplementary material is available at SLEEP online.
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The datasets for this manuscript will be made publicly available 
after the acceptance for publication of the main findings from 
the final dataset, and after the participants' privacy has been 
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protected in accord with applicable Swiss laws and regulations. 
Requests to access the datasets should be directed to Francesca 
Siclari (f.siclari@nin.knaw.nl).
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